• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 18
  • 12
  • 10
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Time-series Analysis of Line Profile Variability in Optical Spectra of ε Orionis

Thompson, Gregory Brandon 23 September 2009 (has links)
No description available.
22

On the Winds of Carbon Stars and the Origin of Carbon : A Theoretical Study

Mattsson, Lars January 2009 (has links)
Carbon is the basis for life, as we know it, but its origin is still largely unclear. Carbon-rich Asymptotic Giant Branch (AGB) stars (carbon stars) play an important rôle in the cosmic matter cycle and may contribute most of the carbon in the Galaxy. In this thesis it is explored how the dust-driven mass loss of these stars depends on the basic stellar parameters by computing a large grid of wind models. The existence of a critical wind regime and mass-loss thresholds for dust-driven winds are confirmed. Furthermore, a steep dependence of mass loss on carbon excess is found. Exploratory work on the effects of different stellar metallicities and the sizes of dust grains shows that strong dust-driven winds develop also at moderately low metallicities, and that typical sizes of dust grains affect the wind properties near a mass-loss threshold. It is demonstrated that the mass-loss rates obtained with the wind models have dramatic consequences when used in models of carbon-star evolution. A pronounced superwind develops soon after the star becomes carbon rich, and it therefore experiences only a few thermal pulses as a carbon star before the envelope is lost. The number of dredge-up events and the thermal pulses is limited by a self-regulating mechanism: each thermal pulse dredges up carbon, which increases the carbon excess and hence also the mass-loss rate. In turn, this limits the number of thermal pulses. The mass-loss evolution during a thermal pulse (He-shell flash) is considered as an explanation of the observations of so-called detached shells around carbon stars. By combining models of dust-driven winds with a stellar evolution model, and a simple hydrodynamic model of the circumstellar envelope, it is shown that wind properties change character during a He-shell flash such that a thin detached gas shell can form by wind-wind interaction. Finally, it is suggested that carbon stars are responsible for much of the carbon in the interstellar medium, but a scenario where high-mass stars are major carbon producers cannot be excluded. In either case, however, the carbon abundances of the outer Galactic disc are relatively low, and most of the carbon has been released quite recently. Thus, there may neither be enough carbon, nor enough time, for more advanced carbon-based life to emerge in the outer Galaxy. This lends some support to the idea that only the mid-part of the Galactic disc can be a “Galactic habitable zone”, since the inner parts of the Galaxy are plagued by frequent supernova events that are presumably harmful to all forms of life.
23

Numerical modelling of stellar winds for supernova progenitors / Stefanus Petrus van den Heever.

Van den Heever, Stefanus Petrus January 2011 (has links)
A two-dimensional hydrodynamic numerical model is extended and applied to simulate the interaction between stellar winds and the interstellar medium (ISM). In particular, the stellar wind evolution of O- and B-type stars is calculated. First, the evolution of a stellar wind into the ambient interstellar medium and also a more dense molecular cloud are considered for the case of no relative motion between the star and the interstellar medium. This interaction results in a cavity being blown into the ISM. Of importance in this work is the boundary radius (astropause) of the stellar wind and also the location where the outflow speed decreases from supersonic to subsonic speeds, called the termination shock. Different parameters like ISM density, outflow speed and mass-loss rate were varied to study the effect these have on the computed astropause (AP) and termination shock (TS) radii. The evolution of these structures is presented up to a simulation time of 1 My. However, stars are not stationary relative to the ISM, and the evolution of stellar winds into the interstellar medium including relative motion is also considered. It is shown that the positions of the TS and AP are dependent on the mass-loss rate and stellar wind outflow speed of the star and the interstellar medium density and relative speed. When these massive stars reach the end of their life, they end their life in a supernova explosion. The explosion results in a blast wave moving outward, called the forward shock (FS) and a reverse shock (RS) also forms which moves inward. Previous work done by Ferreira and de Jager (2008) to simulate supernova remnant (SNR) evolution, was only done for the case of evolution into the undisturbed ISM (no cavity). In this work, the evolution of SNR is simulated taking also into account the pre-existing cavity blown out by the stellar winds of these massive stars. The results of this study showed that the evolution of the SNR is definitely influenced by the presence of a stellar wind cavity even if the cavity is only a few pc in extent. / Thesis (MSc (Space Physics))--North-West University, Potchefstroom Campus, 2011.
24

Numerical modelling of stellar winds for supernova progenitors / Stefanus Petrus van den Heever.

Van den Heever, Stefanus Petrus January 2011 (has links)
A two-dimensional hydrodynamic numerical model is extended and applied to simulate the interaction between stellar winds and the interstellar medium (ISM). In particular, the stellar wind evolution of O- and B-type stars is calculated. First, the evolution of a stellar wind into the ambient interstellar medium and also a more dense molecular cloud are considered for the case of no relative motion between the star and the interstellar medium. This interaction results in a cavity being blown into the ISM. Of importance in this work is the boundary radius (astropause) of the stellar wind and also the location where the outflow speed decreases from supersonic to subsonic speeds, called the termination shock. Different parameters like ISM density, outflow speed and mass-loss rate were varied to study the effect these have on the computed astropause (AP) and termination shock (TS) radii. The evolution of these structures is presented up to a simulation time of 1 My. However, stars are not stationary relative to the ISM, and the evolution of stellar winds into the interstellar medium including relative motion is also considered. It is shown that the positions of the TS and AP are dependent on the mass-loss rate and stellar wind outflow speed of the star and the interstellar medium density and relative speed. When these massive stars reach the end of their life, they end their life in a supernova explosion. The explosion results in a blast wave moving outward, called the forward shock (FS) and a reverse shock (RS) also forms which moves inward. Previous work done by Ferreira and de Jager (2008) to simulate supernova remnant (SNR) evolution, was only done for the case of evolution into the undisturbed ISM (no cavity). In this work, the evolution of SNR is simulated taking also into account the pre-existing cavity blown out by the stellar winds of these massive stars. The results of this study showed that the evolution of the SNR is definitely influenced by the presence of a stellar wind cavity even if the cavity is only a few pc in extent. / Thesis (MSc (Space Physics))--North-West University, Potchefstroom Campus, 2011.
25

Sur les origines photosphériques des structures dans les vents des étoiles chaudes et lumineuses

Ramiaramanantsoa, Tahina 08 1900 (has links)
No description available.
26

Simulations Monte Carlo de régions d'interaction en corotation dans le vent d'étoiles chaudes

Carlos-Leblanc, Danny 06 1900 (has links)
No description available.
27

Caractérisation et modélisation de l’évolution spectrale des étoiles naines blanches chaudes

Bédard, Antoine 07 1900 (has links)
Cette thèse présente une étude empirique et théorique approfondie de l'évolution spectrale des étoiles naines blanches, avec un accent particulier sur les naines blanches chaudes. La composition atmosphérique (et donc l'apparence spectrale) de ces cadavres stellaires peut changer drastiquement avec le temps à mesure qu'ils se refroidissent. Ce phénomène est généralement interprété comme le résultat d'une compétition entre divers mécanismes de transport des éléments dans l'enveloppe stellaire (tels que la diffusion, la convection, les vents et l'accrétion), mais demeure mal compris à plusieurs égards. Il est impératif de remédier à cette situation pour être en mesure d'exploiter le potentiel immense des naines blanches pour notre compréhension du passé de la Galaxie. Pour mieux caractériser l'incidence de l'évolution spectrale, nous effectuons tout d'abord une analyse spectroscopique exhaustive de près de 2000 naines blanches chaudes (Teff > 30,000 K) observées par le relevé SDSS. Nous déterminons les propriétés atmosphériques (notamment la température effective et la composition de surface) de ces objets à l'aide d'un nouvel ensemble de modèles d'atmosphère calculé spécifiquement à cet effet. En examinant la fréquence relative des étoiles riches en hydrogène et riches en hélium en fonction de la température, nous obtenons pour la première fois un portrait empirique détaillé de l'évolution spectrale des naines blanches chaudes. Plus spécifiquement, nous déduisons (1) qu'environ une étoile sur quatre arrive sur la séquence de refroidissement avec une atmosphère d'hélium, et (2) qu'environ deux tiers de ces objets développent ultérieurement une atmosphère d'hydrogène. En outre, nous accordons une attention particulière aux naines blanches hybrides (qui montrent à la fois des traces d'hydrogène et d'hélium) de notre échantillon et à ce que ces objets distinctifs nous apprennent sur l'évolution spectrale. Nous étudions ensuite l'évolution spectrale d'un point de vue théorique en modélisant les transformations chimiques qui s'opèrent dans les naines blanches. Pour ce faire, nous utilisons le code d'évolution stellaire STELUM, qui inclut un traitement cohérent et réaliste du transport des éléments et nous permet donc de réaliser les simulations numériques d'évolution spectrale les plus sophistiquées à ce jour. Nous modélisons la diffusion de l'hydrogène résiduel dans une enveloppe d'hélium à haute température, qui mène ultimement à la formation d'une atmosphère d'hydrogène. Nous simulons également le mélange convectif de cette couche superficielle d'hydrogène avec la couche sous-jacente d'hélium à basse température, qui produit à nouveau une surface dominée par l'hélium. En outre, nous étudions le transport du carbone dans les étoiles riches en hélium, incluant à la fois le tri gravitationnel à haute température et le dragage convectif à basse température. Ces calculs donnent lieu à plusieurs résultats astrophysiques d'intérêt. Nous obtenons notamment une contrainte inédite sur la quantité d'hydrogène résiduel contenue dans les naines blanches chaudes dominées par l'hélium. Nous démontrons aussi que la bifurcation observée dans le diagramme couleur-magnitude des naines blanches découvertes par le satellite Gaia est une signature du processus de mélange convectif à basse température. Par ailleurs, nos modèles fournissent de précieuses informations sur les propriétés des étoiles polluées par le carbone, en particulier sur leur masse et leur zone convective. Enfin, le résultat le plus important de cette thèse est la résolution définitive du problème le plus sérieux de la théorie de l'évolution spectrale, soit le problème de l'origine de l'hydrogène à la surface des naines blanches de type DBA. / This thesis presents an in-depth empirical and theoretical study of the spectral evolution of white dwarf stars, with a particular focus on hot white dwarfs. The atmospheric composition (and thus the spectral appearance) of these stellar remnants can change drastically over time as they cool. This phenomenon is generally interpreted as the result of an interplay between various element transport mechanisms in the stellar envelope (such as diffusion, convection, winds, and accretion), but remains poorly understood in several respects. It is imperative to remedy this situation to be able to exploit the immense potential of white dwarfs for our understanding of the past of the Galaxy. To better characterize the incidence of spectral evolution, we first carry out an exhaustive spectroscopic analysis of nearly 2000 hot white dwarfs (Teff > 30,000 K) observed by the SDSS survey. We determine the atmospheric properties (in particular the effective temperature and surface composition) of these objects using a new set of model atmospheres calculated specifically for this purpose. By examining the relative frequency of hydrogen-rich and helium-rich stars as a function of temperature, we obtain for the first time a detailed empirical picture of the spectral evolution of hot white dwarfs. More specifically, we infer (1) that about one in four stars enters the cooling sequence with a helium atmosphere, and (2) that about two-thirds of these objects eventually develop a hydrogen atmosphere. Furthermore, we pay special attention to the hybrid white dwarfs (which exhibit traces of both hydrogen and helium) in our sample and to what can be learned about spectral evolution from these distinctive objects. We then study spectral evolution from a theoretical point of view by modeling the chemical transformations that take place in white dwarfs. To do this, we use the stellar evolution code STELUM, which includes a consistent and realistic treatment of element transport and therefore allows us to perform the most sophisticated numerical simulations of spectral evolution to date. We model the diffusion of residual hydrogen in a helium envelope at high temperature, which ultimately leads to the formation of a hydrogen atmosphere. We also simulate the convective mixing of this superficial hydrogen layer with the underlying helium layer at low temperature, which once again produces a helium-dominated surface. Furthermore, we study the transport of carbon in helium-rich stars, including both gravitational settling at high temperature and convective dredge-up at low temperature. These calculations give rise to several astrophysical results of interest. In particular, we obtain an unprecedented constraint on the amount of residual hydrogen contained within hot helium-dominated white dwarfs. We also demonstrate that the bifurcation observed in the color-magnitude diagram of white dwarfs discovered by the Gaia satellite is a signature of the convective mixing process at low temperature. Furthermore, our models provide valuable information on the properties of carbon-polluted stars, in particular on their mass and convective zone. Finally, the most important result of this thesis is the definitive resolution of the most serious problem of the theory of spectral evolution, namely the problem of the origin of hydrogen at the surface of DBA-type white dwarfs.

Page generated in 0.1801 seconds