• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 60
  • 25
  • 24
  • 19
  • 17
  • 17
  • 16
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Earthquake Performance Of Un-stiffened Thin Steel Plate Shear Walls

Morel, Osman Fuat 01 January 2004 (has links) (PDF)
In this study two dimensional steel frames, reinforced with un-stiffened thin steel panels, are investigated. In the first part of the study, the strip model, a method for analyzing un-stiffened thin steel plate shear walls, was investigated. Sensitivity studies to investigate the influence of the number of strip members to be used to in the strip model and their angle of inclination were conducted. In the second part, responses of various un-stiffened steel plate shear wall systems to lateral loads were investigated. The influences of three major parameters were studied. These are the beam-to-column connection type, the boundary frame stiffness and the plate slenderness ratio (the ratio of the centerline column spacing to the thickness of the plate). In both parts nonlinear pushover analysis were performed with SAP2000 structural analysis program. In this study, the history of development, theory and advantages of un-stiffened thin steel plate shear walls and recommendations for this lateral load resisting system are presented.
32

Analysis Of High Frequency Behavior Of Plate And Beam Structures By Statistical Energy Analysis Method

Yilmazel, Canan 01 June 2004 (has links) (PDF)
Statistical Energy Analysis (SEA) is one of the methods in literature to estimate high frequency vibrations. The inputs required for the SEA power balance equations are damping and coupling loss factors, input powers to the subsystems. In this study, the coupling loss factors are derived for two and three plates joined with a stiffener system. Simple formulas given in the literature for coupling loss factors of basic junctions are not used and the factors are calculated from the expressions derived in this study. The stiffener is modelled as line mass, Euler beam, and open section channel having double and triple coupling. Plate is modelled as Kirchoff plate. In the classical SEA approach the joint beam is modelled as another subsystem. In this study, the beam is not a separate subsystem but is used as the characteristics of the joint and to calculate the coupling loss factor between coupled plates. Sensitivity of coupling loss factors to system parameters is studied for different beam approaches. The derived coupling loss factors and input powers are used to calculate the subsystem energies by SEA. The last plate is joined to the first one to simulate the fuselage structure. A plate representing floor structure and acoustic volume are also added. The different modelling types are assessed by applying pressure wave excitation. It is shown that deriving the parameters as given in this study increases the efficiency of the SEA method.
33

Residual Ultimate Buckling Strength of Steel Stiffened Panels Subjected to Corrosion Damage

Fox, Elijah D. January 2017 (has links)
No description available.
34

Automation and Expert System Framework for Coupled Shell-Solid Finite Element Modeling of Complex Structures

Palwankar, Manasi Prafulla 25 March 2022 (has links)
Finite Element (FE) analysis is a powerful numerical technique widely utilized to simulate the real-world response of complex engineering structures. With the advancements in adaptive optimization frameworks, multi-fidelity (coupled shell-solid) FE models are increasingly sought during the early design stages where a large design space is being explored. This is because multi-fidelity models have the potential to provide accurate solutions at a much lower computational cost. However, the time and effort required to create accurate and optimal multi-fidelity models with acceptable meshes for highly complex structures is still significant and is a major bottleneck in the FE modeling process. Additionally, there is a significant level of subjectivity involved in the decision-making about the multi-fidelity element topology due to a high dependence on the analyst's experience and expertise, which often leads to disagreements between analysts regarding the optimal modeling approach and heavy losses due to schedule delays. Moreover, this analyst-to-analyst variability can also result in significantly different final engineering designs. Thus, there is a greater need to accelerate the FE modeling process by automating the development of robust and adaptable multi-fidelity models as well as eliminating the subjectivity and art involved in the development of multi-fidelity models. This dissertation presents techniques and frameworks for accelerating the finite element modeling process of multi-fidelity models. A framework for the automated development of multi-fidelity models with adaptable 2-D/3-D topology using the parameterized full-fidelity and structural fidelity models is presented. Additionally, issues related to the automated meshing of highly complex assemblies is discussed and a strategic volume decomposition technique blueprint is proposed for achieving robust hexahedral meshes in complicated assembly models. A comparison of the full-solid, full-shell, and different multi-fidelity models of a highly complex stiffened thin-walled pressure vessel under external and internal tank pressure is presented. Results reveal that automation of multi-fidelity model generation in an integrated fashion including the geometry creation, meshing and post-processing can result in considerable reduction in cost and efforts. Secondly, the issue of analyst-to-analyst variability is addressed using a Decision Tree (DT) based Fuzzy Inference System (FIS) for recommending optimal 2D-3D element topology for a multi-fidelity model. Specifically, the FIS takes the structural geometry and desired accuracy as inputs (for a range of load cases) and infers the optimal 2D-3D topology distribution. Once developed, the FIS can provide real-time optimal choices along with interpretability that provides confidence to the analyst regarding the modeling choices. The proposed techniques and frameworks can be generalized to more complex problems including non-linear finite element models and as well as adaptable mesh generation schemes. / Doctor of Philosophy / Structural analysis is the process of determining the response (mainly, deformation and stresses) of a structure under specified loads and external conditions. This is often performed using computational modeling of the structure to approximate its response in real-life conditions. The Finite Element Method (FEM) is a powerful and widely used numerical technique utilized in engineering applications to evaluate the physical performance of structures in several engineering disciplines, including aerospace and ocean engineering. As optimum designs are increasing sought in industries, the need to develop computationally efficient models becomes necessary to explore a large design space. As such, optimal multi-fidelity models are preferred that utilize higher fidelity computational domain in the critical areas and a lower fidelity domain in less critical areas to provide an optimal trade-off between accuracy and efficiency. However, the development of such optimal models involves a high level of expertise in making a-priori and a-posteriori optimal modeling decisions. Such experience based variability between analysts is often a major cause of schedule delays and considerable differences in final engineering designs. A combination of automated model development and optimization along with an expert system that relieves the analyst of the need for experience and expertise in making software and theoretical assumptions for the model can result in a powerful and cost-effective computational modeling process that accelerates technological advancements. This dissertation proposes techniques for automating robust development of complex multi-fidelity models. Along with these techniques, a data-driven expert system framework is proposed that makes optimal multi-fidelity modeling choices based on the structural configuration and desired accuracy level.
35

Vibration and Buckling Analysis of Unitized Structure Using Meshfree Method and Kriging Model

Yeilaghi Tamijani, Ali 07 June 2011 (has links)
The Element Free Galerkin (EFG) method, which is based on the Moving Least Squares (MLS) approximation, is developed here for vibration, buckling and static analysis of homogenous and FGM plate with curvilinear stiffeners. Numerical results for different stiffeners configurations and boundary conditions are presented. All results are verified using the commercial finite element software ANSYS® and other available results in literature. In addition, the vibration analysis of plates with curvilinear stiffeners is carried out using Ritz method. A 24 by 28 in. curvilinear stiffened panel was machined from 2219-T851 aluminum for experimental validation of the Ritz and meshfree methods of vibration mode shape predictions. Results were obtained for this panel mounted vertically to a steel clamping bracket using acoustic excitation and a laser vibrometer. Experimental results appear to correlate well with the meshfree and Ritz method results. In reality, many engineering structures are subjected to random pressure loads in nature and cannot be assumed to be deterministic. Typical engineering structures include buildings and towers, offshore structures, vehicles and ships, are subjected to random pressure. The vibrations induced from gust loads, engine noise, and other auxiliary electrical system can also produce noise inside aircraft. Consequently, all flight vehicles operate in random vibration environment. These random loads can be modeled by using their statistical properties. The dynamical responses of the structures which are subjected to random excitations are very complicated. To investigate their dynamic responses under random loads, the meshfree method is developed for random vibration analysis of curvilinearly-stiffened plates. Since extensive efforts have been devoted to study the buckling and vibration analysis of stiffened panel to maximize their natural frequencies and critical buckling loads, these structures are subjected to in-plane loading while the vibration analysis is considered. In these cases the natural frequencies calculated by neglecting the in-plane compression are usually over predicted. In order to have more accurate results it might be necessary to take into account the effects of in-plane load since it can change the natural frequency of plate considerably. To provide a better view of the free vibration behavior of the plate with curvilinear stiffeners subjected to axial/biaxial or shear stresses several numerical examples are studied. The FEM analysis of curvilinearly stiffened plate is quite computationally expensive, and the meshfree method seems to be a proper substitution to reduce the CPU time. However it will still require many simulations. Because of the number of simulations may be required in the solution of an engineering optimization problem, many researchers have tried to find approaches and techniques in optimization which can reduce the number of function evaluations. In these problems, surrogate models for analysis and optimization can be very efficient. The basic idea in surrogate model is to reduce computational cost and giving a better understanding of the influence of the design variables on the different objectives and constrains. To use the advantage of both meshfree method and surrogate model in reducing CPU time, the meshfree method is used to generate the sample points and combination of Kriging (a surrogate model) and Genetic Algorithms is used for design of curvilinearly stiffened plate. The meshfree and kriging results and CPU time were compared with those obtained using EBF3PanelOpt. / Ph. D.
36

On the Formulation of a Hybrid Discontinuous Galerkin Finite Element Method (DG-FEM) for Multi-layered Shell Structures

Li, Tianyu 07 November 2016 (has links)
A high-order hybrid discontinuous Galerkin finite element method (DG-FEM) is developed for multi-layered curved panels having large deformation and finite strain. The kinematics of the multi-layered shells is presented at first. The Jacobian matrix and its determinant are also calculated. The weak form of the DG-FEM is next presented. In this case, the discontinuous basis functions can be employed for the displacement basis functions. The implementation details of the nonlinear FEM are next presented. Then, the Consistent Orthogonal Basis Function Space is developed. Given the boundary conditions and structure configurations, there will be a unique basis function space, such that the mass matrix is an accurate diagonal matrix. Moreover, the Consistent Orthogonal Basis Functions are very similar to mode shape functions. Based on the DG-FEM, three dedicated finite elements are developed for the multi-layered pipes, curved stiffeners and multi-layered stiffened hydrofoils. The kinematics of these three structures are presented. The smooth configuration is also obtained, which is very important for the buckling analysis with large deformation and finite strain. Finally, five problems are solved, including sandwich plates, 2-D multi-layered pipes, 3-D multi-layered pipes, stiffened plates and stiffened multi-layered hydrofoils. Material and geometric nonlinearities are both considered. The results are verified by other papers' results or ANSYS. / Master of Science
37

Contribuição ao estudo de painéis reforçados: comparação entre o método da chapa ortotrópica e o método dos elementos finitos. / Contribution to the study of reinforced panels: comparison between orthotropic plate method and the finite element method.

Galindo Orozco, Juan Carlos 05 December 2008 (has links)
Métodos convencionais, tais como o método da chapa ortotrópica, têm sido aplicados por muitos anos no estudo de painéis reforçados pela sua simplicidade e facilidade de aplicação na determinação de tensões agentes nas fases iniciais da espiral projeto. Não estão disponíveis na literatura, porém, análises comparativas do método da chapa ortotrópica com procedimentos numéricos utilizando elementos finitos (MEF) que permitam a determinação da acurácia ou da ordem de grandeza dos desvios inerentes à aplicação desta metodologia. O presente trabalho apresenta análises comparativas entre estas duas metodologias na solução de painéis reforçados submetidos a carga lateral uniforme, tipicamente aplicados a estruturas navais (chapa em apenas um dos lados com reforçadores em T). Com este objetivo foram construídos modelos de painéis simplesmente apoiados e engastados (modelagem com elementos de viga e casca) com diferentes espaçamentos e diferentes inércias de reforçadores, configurando uma ampla matriz de análise paramétrica. Os resultados de deflexões e tensões nas vigas e chapas obtidos dos modelos MEF foram parametrizados em função das variáveis da chapa ortotrópica (razão de aspecto virtual), (coeficiente de torção) e K (parâmetro adimensional de tensões e de deflexão). Esta parametrização permite gerar curvas numéricas de tensão e deflexão dos modelos em estudo. As curvas numéricas assim geradas são comparadas com as curvas propostas pelo método da chapa ortotrópica para painéis reforçados simplesmente apoiados, de tal maneira que sua comparação permita, além de determinar a sensibilidade dos resultados numéricos em função das mudanças de inércia e espaçamento entre reforçadores, aferir o nível de desvio oriundo do uso da metodologia da chapa ortotrópica em relação ao método dos elementos finitos. Resultados mostram que as curvas derivadas da metodologia da chapa ortotrópica fornecem bons resultados para as deflexões e tensões transversais nas vigas no centro do painel reforçado. Para as tensões longitudinais nas vigas, uma curva corrigida de tensões longitudinais máximas é fornecida. No caso das curvas de tensões longitudinais e transversais na chapa, as curvas da chapa ortotrópica fornecem valores conservadores de tensão no centro do painel em relação aos valores obtidos dos modelos MEF. Adicionalmente, uma vez que o método da chapa ortotrópica só fornece curvas para chapa sem reforçadores no caso de condição de engaste, curvas numéricas das diferentes variáveis são fornecidas para esta condição. Analogias são feitas com a solução fornecida pelo método da chapa ortotrópica para painéis reforçados com razão de aspecto =, borda longitudinal engastada e borda transversal apoiada. Adicionalmente, resultados analíticos baseados na teoria de grelhas são comparados com os valores fornecidos pelas curvas numéricas para painel engastado obtendo-se resultados consistentes. Com esta análise foi possível determinar a aplicabilidade e limitações do método da chapa ortotrópica no estudo de painéis reforçados simplesmente apoiados. O estudo também fornece novas curvas numéricas para painéis reforçados engastados. / Conventional methods, such as the orthotropic plate, have been applied for many years in the study of stiffened plates to obtain the stresses acting on the structure in the early stages of the structural design, because of its simplicity and easy application. However, comparative analyses of the orthotropic plate method with numerical methods using finite element analyses (FEM) to determine its accuracy or inherent errors are not available in the literature. This study presents comparative analyses between the solutions of the two methodologies for reinforced panels subjected to lateral uniform load, typically applied to marine structures (plate only on one side with T beams). Models of reinforced panels were implemented for a simply supported and clamped boundary conditions with different spacing between stiffeners and different stiffeners`s inertia, setting up a broad array of parametric analysis. The deflections and stresses in beams and plate derived from the MEF analyses were parameterized as function of the orthotropic plate parameters: (virtual aspect ratio), (torsion coefficient) and K (dimensionless parameter of stress and deflection). This enables the generation of parametric numerical curves of stresses and deflections for the models under study. The numerical curves generated in this way were compared with the analytic curves proposed by the orthotropic plate theory for reinforced panels with simply supported boundary conditions. The comparisons allow, in addition to a sensitivity analysis of the numerical curves as a function of inertia and spacing between stiffeners, the assessment of inherent deviation for the orthotropic plate theory when compared with the finite element analyses. From the comparative analyses, it is possible to conclude that the curves proposed for the orthotropic theory for deflection and stresses of the transverse beam at the center of the reinforced panels have a good correlation with the numeric curves and provide accurate results. For the stresses on longitudinal beam, a revised curved for maximum stresses is provided. For the curves of plate stresses in the longitudinal and transverse directions at the center of the panels, the orthotropic plate theory provides conservative values when compared with the values of FEM models. The orthotropic plate method only provides curves for unstiffened plate under clamped boundary condition. Numerical curves for reinforced panels with clamped boundary condition are provided. Analogies are made between the solution provided by the orthotropic theory for a reinforced panel with an infinite virtual aspect ratio = , longitudinal edges clamped and transverse edges simply supported. Additionally, analytical results based on grillage theory were compared with the values provided by the numerical curves for clamped reinforced panels, obtaining a consistent results and a good correlation. This analysis provides a critic overview of the applicability and limitations of the orthotropic plate method for the analyses of reinforced panels with simply supported boundary condition. The study also provides new numerical solutions for reinforced panels with clamped boundary condition.
38

Branch Plate-to-circular Hollow Structural Section Connections

Voth, Andrew Peter 17 February 2011 (has links)
Although branch plate connections with circular hollow section (CHS) members are simple to fabricate and cost-effective, they are generally very flexible under low load application resulting in the limit states design resistance being governed by an imposed deformation limit. Restricting the ultimate capacity of a branch plate connection by a deformation limit results in the inherent strength of the CHS member being under-utilized, highlighting the need to develop connection stiffening methods. Two methods to stiffen branch plate-to-CHS connections are examined: a through plate connection and a grout-filled CHS branch plate connection. Further, the current design guidelines of various plate-to-CHS connection types are reexamined including the effect of chord axial stress and chord length on connection behaviour. Finally, the behaviour of connections with non-orthogonal or skew plate orientation, which has not previously been examined, was studied in depth.The behaviour of these uniplanar connection types under quasi-static axial loading was studied through 16 large-scale laboratory experiments and 682 numerical finite element analyses, as well as an extensive review of all previous international experimental and numerical findings. The extensive study formed the basis for a complete set of proposed design guidelines and provided insight into plate-to-CHS connection behaviour. For all plate-to-CHS connection types, the plate thickness is shown to effect connection capacity, though previously this was thought not to have significant impact on connection behaviour. The existing ideology of using the same design recommendations for tension- and compression-loaded connections, which was developed from compression results, under-utilizes an inherent increase in capacity provided by a connection primarily loaded in tension. As such, the recommended design guidelines split the two load senses into separate expressions that reflect the difference in behaviour. Stiffened through plate connection behaviour was determined to be the summation of branch plate behaviour in compression and tension, leading to a significant increase in capacity and identical behaviour regardless of branch load sense. The skewed branch plate connection behaviour was found to relate directly to the established behaviour of longitudinal and transverse plate connections. A design function was developed that interpolates the capacities of intermediate angles by using the proposed design recommendations of the two extreme connection types. Finally, the examination of chord axial stress and chord length for plate-to-CHS connections yielded results similar to previous international studies on CHS-to-CHS connections. The effect of chord length, however, has wide-reaching implications as to how experimental and numerical FE research programs are developed.
39

Free Flexural (or Bending) Vibrations Analysis Of Doubly Stiffened, Composite, Orthotropic And/or Isotropic Base Plates And Panels (in Aero-structural Systems)

Cil, Kursad 01 September 2003 (has links) (PDF)
In this Thesis, the problem of the Free Vibrations Analysis of Doubly Stiffened Composite, Orthotropic and/or Isotropic, Base Plates or Panels (with Orthotropic Stiffening Plate Strips) is investigated. The composite plate or panel system is made of an Orthotropic and/or Isotropic Base Plate stiffened or reinforced by adhesively bonded Upper and Lower Orthotropic Stiffening Plate Strips. The plates are assumed to be the Mindlin Plates connected by relatively very thin adhesive layers. The general problem under study is considered in terms of three problems, namely Main PROBLEM I Main PROBLEM II and Main PROBLEM III. The theoretical formulation of the Main PROBLEMS is based on a First Order Shear Deformation Plate Theory (FSDPT) that is, in this case, the Mindlin Plate Theory. The entire composite system is assumed to have simple supports along the two opposite edges so that the Classical Levy&#039 / s Solutions can be applied in that direction. Thus, the transverse shear deformations and the rotary moments of inertia of plates are included in the formulation. The very thin, yet elastic deformable adhesive layers are considered as continua with transverse normal and shear stresses. The damping effects in the plates and the adhesive layers are neglected. The sets of the systems of equations of the Mindlin Plate Theory are reduced to a set of the Governing System of First Order Ordinary Differential Equations in the state vector form. The sets of the Governing System for each Main PROBLEM constitute a Two-Point Boundary Value Problem in the y-direction which is taken along the length of the plates. Then, the system is solved by the Modified Transfer Matrix Method (with Interpolation Polynomials and/or Chebyshev Polynomials)which is a relatively semi-analytical and numerical technique. The numerical results and important parametric studies of the natural modes and the corresponding frequencies of the composite system are presented.
40

Branch Plate-to-circular Hollow Structural Section Connections

Voth, Andrew Peter 17 February 2011 (has links)
Although branch plate connections with circular hollow section (CHS) members are simple to fabricate and cost-effective, they are generally very flexible under low load application resulting in the limit states design resistance being governed by an imposed deformation limit. Restricting the ultimate capacity of a branch plate connection by a deformation limit results in the inherent strength of the CHS member being under-utilized, highlighting the need to develop connection stiffening methods. Two methods to stiffen branch plate-to-CHS connections are examined: a through plate connection and a grout-filled CHS branch plate connection. Further, the current design guidelines of various plate-to-CHS connection types are reexamined including the effect of chord axial stress and chord length on connection behaviour. Finally, the behaviour of connections with non-orthogonal or skew plate orientation, which has not previously been examined, was studied in depth.The behaviour of these uniplanar connection types under quasi-static axial loading was studied through 16 large-scale laboratory experiments and 682 numerical finite element analyses, as well as an extensive review of all previous international experimental and numerical findings. The extensive study formed the basis for a complete set of proposed design guidelines and provided insight into plate-to-CHS connection behaviour. For all plate-to-CHS connection types, the plate thickness is shown to effect connection capacity, though previously this was thought not to have significant impact on connection behaviour. The existing ideology of using the same design recommendations for tension- and compression-loaded connections, which was developed from compression results, under-utilizes an inherent increase in capacity provided by a connection primarily loaded in tension. As such, the recommended design guidelines split the two load senses into separate expressions that reflect the difference in behaviour. Stiffened through plate connection behaviour was determined to be the summation of branch plate behaviour in compression and tension, leading to a significant increase in capacity and identical behaviour regardless of branch load sense. The skewed branch plate connection behaviour was found to relate directly to the established behaviour of longitudinal and transverse plate connections. A design function was developed that interpolates the capacities of intermediate angles by using the proposed design recommendations of the two extreme connection types. Finally, the examination of chord axial stress and chord length for plate-to-CHS connections yielded results similar to previous international studies on CHS-to-CHS connections. The effect of chord length, however, has wide-reaching implications as to how experimental and numerical FE research programs are developed.

Page generated in 0.0371 seconds