• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 20
  • 10
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exceptional points and adiabatic evolution in optical coupled mode systems

Yang, Guang 30 August 2023 (has links)
Quantum and classical frameworks form two perspectives for describing physical systems. Their formulation also presents interesting isomorphism: for example, the Schrodinger equation can find its classical correspondence in the paraxial Helmholtz equation, and coherent atomic population transfers is analogous to coupling dynamics in waveguides. In classical coupled mode systems, quantum notion can be manifested in the following ways: (1) adiabatic (i.e., sufficiently slow) evolution of the Hamiltonian enables robust mode conversion and light transfer, where the dynamics is carried out in predominantly one eigenmode; (2) non-Hermitian Hamiltonians give rise to peculiar singularities known as exceptional points (EPs), associated with not only degenerate eigenvalues but coalescent eigenvectors. In this dissertation, we explore the above principles in light manipulation, sensing, and photonic emulation. First, we numerically demonstrate two examples of photonic devices based on adiabatic evolution engineering. We present a coupled waveguide system analogous to the atomic physics process of stimulated Raman adiabatic passage, where the principle of adiabaticity not only allows high-extinction polarization mode splitting, but also counterintuitively mitigates the losses from the plasmonic structure involved. We show a modal hybridization effect in rib waveguide geometry that allows the mode to adiabatically evolve from one polarization to its orthogonal state upon electro-optic modulation in thin film lithium niobate, enabling an actively switchable polarization converter. We propose a generic EP emulator based on programmable photonics to tackle the challenging implementation of EP. Our approach combines on-chip operations of coupling, loss and detuning based on generic photonic modules (Mach-Zehnder interferometers), and a discrete scheme for mapping Hamiltonians to common mesh architecture. We demonstrate multiple exemplary EP functionalities, including loss-induced transparency, encircling second-order EPs in the PT and anti-PT symmetry picture, and a third-order EP. The proposed EP emulator marks a new paradigm for discrete, \textit{in situ} programming of EPs and multi-functional, repurposable EP devices. We also present our preliminary work on NV center-induced EPs. In contrast to conventional fluorescence-based schemes for addressing NV centers, we leverage NV centers' absorption to bring a coupled ring resonator system to an EP and numerically demonstrate the emerging dynamics. Our primary numerical results promise proof-of-concept magnetometry, combining NV centers' response to magnetic and microwave fields with the sensitivity enhancing nature of EP. This dissertation sheds light on unconventional photonics inspired by quantum-like principles. / 2025-08-29T00:00:00Z
12

Laser Spectroscopy Sensor for Measurements of Trace Gaseous Sulfur Dioxide (SO<sub>2</sub>)

Matta, Anand 17 December 2008 (has links)
No description available.
13

Calculations and Measurements of Raman Gain Coefficients of Different Fiber Types

Kang, Yuhong 10 January 2003 (has links)
Fiber Raman amplification using the transmission line is a promising technology to increase the repeater distance as well as the capacity of the communication systems. Because of the growing importance of fiber Raman amplification, it is desired to predict the magnitude and shape of the Raman gain spectrum from the doping level and refractive index profiles of different fiber designs. This thesis develops a method to predict the Raman gain coefficients and spectra for a pure silica core fiber and two different types of GeO2-doped silica fibers given their index profiles. An essential feature of the model is the inclusion of the variation in Raman gain coefficient over the mode field due to the variation in the Ge concentration across the fiber core. The calculated Raman gain coefficients were compared with measurements of the peak Raman gain on a step-index GeO2-doped fiber and with published measurements from various sources. Agreement between the calculated and measured peak gain for the step-index fiber was excellent. There was qualitative agreement with published measurements but there were significant differences between the calculated and published gain coefficients, which are not understood. Part of the work sought a way of predicting Raman gain coefficients from a standard gain curve given only the fiber type and the effective area. This approach appears promising for moderately-doped fibers with the proper choice of effective area. / Master of Science
14

Stimulated Raman Scattering in Semiconductor Nanostructures

Kroeger, Felix 21 December 2010 (has links) (PDF)
The PhD dissertation is organized in two parts. In the first part, we present an experimental study of stimulated Raman scattering in a silicon-on-insulator (SOI) nanowire. We demonstrate that the Raman amplification of a narrow-band Stokes wave experiences a saturation effect for high pump intensities because of self phase modulation of the pump beam. Moreover, an analytical model is presented that describes the experimental results remarkably well. The model furthermore provides an estimation of the Raman gain coefficient γR of silicon. The second part is devoted to the experimental study of stimulated Raman scattering in a doubly resonant planar GaAs microcavity. The nonlinear measurements clearly show some totally unexpected results. We experimentally demonstrate that the relaxation of the electrons in the conduction band of GaAs is significantly modified through the interaction with coherently excited Raman phonons.
15

Amplificação de Laser por Espalhamento Raman Estimulado em um Plasma Frio

Guarumo, Johny Alejandro Arteaga 26 May 2017 (has links)
Submitted by Biblioteca do Instituto de Física (bif@ndc.uff.br) on 2017-05-26T19:15:31Z No. of bitstreams: 1 tese-mestrado.pdf: 17362957 bytes, checksum: 024ecd9a310935efc222a31e2a31dca0 (MD5) / Made available in DSpace on 2017-05-26T19:15:31Z (GMT). No. of bitstreams: 1 tese-mestrado.pdf: 17362957 bytes, checksum: 024ecd9a310935efc222a31e2a31dca0 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta Dissertação são estudadas as condições em que um pulso eletromagnético (semente) é amplificado e comprimido através da interação não linear de três ondas de um plasma. Para isto, foi empregada uma abordagem analítica em que os três modos, fonte-plasma-semente, variam lentamente no tempo e no espaço. Durante a interação dos três modos, a amplitude da fonte é completamente depletada, enquanto que a onda de plasma e o pulso semente se amplificam. Durante este processo, o pulso semente se dividirá num pulso principal, o qual diminui sua largura proporcionalmente com o tempo de interação, e em vários outros pulsos secundários e de largura constante. Observa-se que a saturação do pulso semente ocorre antes que as instabilidades dos tipos lamentação, quebra de onda e espalhamento Raman para frente ocorram. Fazendo uso do código computacional XOOPIC e de acordo com as condições iniciais impostas ao sistema, obtem-se a potência final do pulso semente e a e ciência do processo. / The conditions under which an electromagnetic (seed) pulse is amplified and compressed by nonlinear three wave interaction in a plasma are studied. An analytical approach is used considering the slowly varying, in space and time, envelope amplitudes of the three wave modos (pump-plasma-seed). It is noted that the amplitude of the pump wave is completely depleted during the interaction while the plasma wave and the seed pulse are amplified. During the interaction, the seed pulse is divided into a main pulse, which decreases its width during the interaction, and in many other secondary pulses with constant width. The process of the saturation of the ampli ed seed pulse occurs before the filamentation, plasma wavebreaking and Raman forward scattering instabilities take place. Using the particle simulation code XOOPIC and according to the prescribed initial conditions of the system, the nal power of the seed pulse and the e ficiency of the process are obtained.
16

Lumière lente par amplification paramétrique dans les fibres optiques biréfringentes / Slow light by parametric amplification in birefringent optical fibers

Nasser, Nour 06 June 2013 (has links)
Cette thèse a pour thème le processus physique de ralentissement de la lumière induit par amplification paramétrique vectorielle dans les fibres optiques biréfringentes. Notre première étude porte sur la lumière lente induite par amplification paramétrique vectorielle dans les fibres fortement biréfringentes. Contrairement au processus scalaire, nous montrons théoriquement que le processus vectoriel offre la possibilité de créer des bandes de gain paramétrique étroites et éloignées de la pompe, permettant de générer des retards optiques très importants, un ordre de grandeur supérieurs à ceux obtenus en amplification paramétrique scalaire. Des résultats analytiques et issus de simulations numériques dans le cas de dispersion normale ainsi que dans le cas de dispersion anormale sont présentés. Ensuite, nous discutons des principales limitations au retard optique (élargissement de l’impulsion pompe notamment) et nous étudions l’influence positive de l’effet Raman sur le retard optique. Notre seconde étude est consacrée à la lumière lente induite par amplification paramétrique dans les fibres faiblement biréfringentes. Nous traitons l’ensemble des configurations possibles d’instabilité de polarisation selon l’état initial de polarisation de l’impulsion pompe et du régime de dispersion. Nous démontrons clairement que la configuration correspondant à une impulsion pompe polarisée suivant l’axe lent de la fibre et une impulsion signal polarisée suivant l’axe rapide en régime de dispersion normale donne des retards optiques les plus important / This thesis aims to the physical process of slow light induced by vector parametric amplification in highly and weakly birefringent optical fibers. Our first study concerns slow light induced by parametric amplification in highly birefringent fibers. Unlike the scalar process, we theoretically demonstrate that large optical delays can be in principle generated in birefringent fibers, one order of magnitude higher than for the scalar case. Both analytical and numerical results in the case of anomalous dispersion are presented. We further discuss the main limitations for slow light optical delays (signal pulse broadening, pump pulse depletion). The influence of the Raman gain is also studied both analytically and numerically. The second study focuses on slow light induced by parametric amplification in weakly birefringent fibers. We consider all possible configurations of polarization modulation instability, depending on the polarization axis of the pump pulse and on the dispersion regime, and we derive the slow-light optical delays. We clearly demonstrate that the configuration corresponding to a pump pulse polarized in the slow axis of the fiber and a signal pulse polarized on the fast axis, in the normal dispersion regime, gives the largest optical delays.
17

Ab-Initio Implementation of Ground and Excited StateResonance Raman Spectroscopy: Application to CondensedPhase and Progress Towards Biomolecules

Dasgupta, Saswata January 2020 (has links)
No description available.
18

Spectroscopie Raman stimulée rapide et imagerie spectrale / Ultra-fast stimulated Raman scattering and hyperspectral imaging

Audier, Xavier 13 December 2018 (has links)
En combinant des techniques de microscopie et de spectroscopie, il est possible de réaliser des images résolues spectralement. Ces images apportent des réponses à de nombreux problèmes en chimie, biologie, et médecine. La diffusion Raman cohérente (CRS) s'est révélée capable de surpasser la diffusion Raman spontanée dans l'analyse chimique d'échantillons, en offrant une meilleure résolution spatiale et un temps d'acquisition plus faible. La vitesse d'acquisition de l'information spectrale demeure toutefois un facteur limitant en imagerie CRS, et de nombreuses recherches se concentrent sur le développement de nouvelles méthodes d'acquisition. Le présent travail s'inscrit dans cette démarche. En combinant la diffusion Raman stimulée (une branche de la CRS), la focalisation spectrale d'impulsions optiques, ainsi qu'une ligne à délai acousto-optique, nous réalisons les premières mesures à de telles vitesses d'acquisition. Le cadre théorique, technologique, ainsi que l’ingénierie nécessaire pour parvenir à ce résultat sont détaillés. Cette technique d'acquisition rapide est illustrée par le suivi de réaction chimique, le contrôle qualité pharmaceutique, en biologie, et en histologie / Combining microscopy and spectroscopy, one can achieve spectrally resolved imaging, and provide a solution to various chemical, biological, or medical challenges. Coherent Raman scattering (CRS) has proven extremely valuable in providing chemical information, with a higher resolution and shorter acquisition time than spontaneous Raman scattering. The acquisition rate of the spectral information from a sample remains the limiting factor of CRS imaging, and several experimental schemes are being investigated to push the technology toward higher imaging frame rates. This work develops one such scheme. Combining stimulated Raman scattering (a CRS technique), spectral focusing with chirped pulses, and a fast acousto-optic delay line, we achieved unprecedented spectral acquisition rates. The theoretical, technological, and engineering frameworks enabling such acquisition are described in details. The application to pharmaceutical quality control, time resolved chemical transformations, biology, and histology are demonstrated
19

Ultrafast Raman Loss Spectroscopic Investigations of Excited State Structural Dynamics of Bis(phenylethynyl)benzene and trans-Stilbene

Mallick, Babita January 2017 (has links) (PDF)
The subject of this thesis is the design and development of a unified set up for femtosecond transient absorption and ultrafast Raman loss spectroscopy and demonstrate its potential in capturing the ultrafast photophysical and photochemical processes with excellent time and frequency resolution. Ultrafast spectroscopy has been serving as a powerful tool for understanding the structural dynamical properties of molecules in the condensed and gas phase. The advent of ultrashort pulses with their high peak power enables the laser spectroscopic community to study molecular reaction dynamics and photophysics that happen at extremely short timescales, ranging from picosecond to femtosecond. These processes can be measured with extremely high time resolution, which helps to resolve the under-lying molecular process. But in order to understand the global mechanism of the underlying molecular processes, we have to resolve the nuclear dynamics with the proper frequency resolution. However, achieving both, time and frequency resolutions simultaneously is not possible according to the Heisenberg uncertainty principle. Later, this limitation was overcome by femtosecond stimulated Raman spectroscopy (FSRS), a third order non-linear Raman spectroscopy. In this thesis we introduced the ultrafast Raman loss spectroscopic (URLS) technique which is analogous to FSRS, offering the modern ultrafast community to resolve molecular processes with better signal-to-noise ratio along with proper time and frequency resolution. We demonstrate the experimental procedure including the single shot detection scheme to measure whitelight background, ground state Ra-man, transient absorption and transient Raman in shot-to-shot detection fashion. URLS has been applied to understand the excited state planarization dynamics of 1,4-bis(phenylethynyl)benzene (BPEB) in different solvents. In addition, excitation wavelength dependent conformational reorganization dynamics of different sub-sets of thermally activated ground state population of BPEB are also discussed. Using the same techniques along with femtosecond transient absorption, we demonstrate the ultrafast vibrational energy transfer and the role of coherent oscillations of low frequency vibrations on the solution phase photo-isomerization of trans-stilbene from an optically excited state. The effects of solvents on the coherent nuclear motion are also discussed in the context of reaction rates. 2
20

Enhancement of Raman signals : coherent Raman scattering and surface enhanced Raman spectroscopy

Chou, He-Chun 06 July 2012 (has links)
Raman spectroscopy is a promising technique because it contains abundant vibrational chemical information. However, Raman spectroscopy is restricted by its small scattering cross section, and many techniques have been developed to amplify Raman scattering intensity. In this dissertation, I study two of these techniques, coherent Raman scattering and surface enhanced Raman scattering and discuss their properties. In the first part of my dissertation, I investigate two coherent Raman processes, coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS). In CARS project, I mainly focus on the molecular resonance effect on detection sensitivity, and I find the detection sensitivity can be pushed into 10 [micromolar] with the assistance of molecular resonance. Also, I am able to retrieve background-free Raman spectra from nonresonant signals. For SRS, we develop a new SRS system by applying spectral focusing mechanism technique. We examine the feasibility and sensitivity of our SRS system. The SRS spectra of standards obtained from our system is consistent with literature, and the sensitivity of our system can achieve 10 times above shot-noise limit. In second part of this dissertation, I study surface enhanced Raman scattering (SERS) and related plasmonic effects. I synthesize different shapes of nanoparticles, including nanorod, nanodimer structure with gap and pyramids by template method, and study how electric field enhancement effects correlate to SERS by two photon luminescence (TPL). Also, I build an optical system to study optical image, spectra and particle morphology together. I find that SERS intensity distribution is inhomogeneous and closely related to nanoparticle shape and polarization direction. However, TPL and SERS are not completely correlated, and I believe different relaxation pathways of TPL and SERS and coupling of LSPR and local fields at different frequencies cause unclear correlation between them. / text

Page generated in 0.1138 seconds