1 |
Homologous Strand Exchange and DNA Helicase Activities in Plant MitochondriaSong, Daqing 13 July 2005 (has links) (PDF)
Homologous recombination is critical for generating genetic variation in living organisms by exchange and rearrangement of DNA. Most of our knowledge about homologous recombination is limited to processes in bacteria or in eukaryotic nuclei. In E. coli, homologous recombination is dependent on the RecA protein. Higher plant chloroplasts have RecA-like strand exchange activity. However, little is known about these mechanisms in higher plant mitochondria. I have detected a RecA-like strand exchange activity in soybean mitochondria. This activity forms joint molecules in the presence of ATP, Mg2+, and homologous DNA substrates. In addition, the E. coli single-stranded DNA binding (SSB) protein is a non-sequence-specific DNA binding protein that functions as an accessory factor for RecA protein-promoted strand exchange reactions. Our lab has identified an Arabidopsis homologue of E. coli SSB that is targeted to mitochondria (mtSSB). The results of my research shows the mtSSB protein has the same properties as the E. coli SSB protein and it can stimulate the E. coli RecA protein-promoted strand exchange reactions. DNA helicases utilize the energy of ATP to separate the two parental DNA strands at the replicating fork or during recombinational strand exchange. Although higher plant chloroplast helicase activity has been reported, no such activity has heretofore been identified in higher plant mitochondria. We report the characterization of a plant mitochondrial DNA helicase isolated from soybean leaves. ATP is required for this enzyme and this enzyme poorly utilizes any other NTPs or dNTPs. The enzyme requires Mg2+ for activity. This enzyme only has 3' to 5'unwinding activity. The optimal conditions for mitochondrial DNA helicase are 2 mM ATP, 8 to 10 mM Mg2+,100 to 200 mM NaCl and 37-42 oC incubation for one hour or longer time.
|
2 |
The evolutionary history of meiotic genes: early origins by duplication and subsequent lossesPightling, Arthur William 01 May 2011 (has links)
Meiosis is necessary for sexual reproduction in eukaryotes. Genetic recombination between non-sister homologous chromosomes is needed in most organisms for successful completion of the first meiotic division. Proteins that function during meiotic recombination have been studied extensively in model organisms. However, less is known about the evolution of these proteins, especially among protists. We searched the genomes of diverse eukaryotes, representing all currently recognized supergroups, for 26 genes encoding proteins important for different stages of interhomolog recombination. We also performed phylogenetic analyses to determine the evolutionary relationships of gene homologs. At least 23 of the genes tested (nine that are known to function only during meiosis in model organisms) are likely to have been present in the Last Eukaryotic Common Ancestor (LECA). These genes encode products that function during: i) synaptonemal complex formation; ii) interhomolog DNA strand exchange; iii) Holliday junction resolution; and iv) sister-chromatid cohesion. These data strongly suggest that the LECA was capable of these distinct and important functions during meiosis. We also determined that several genes whose products function during both mitosis and meiosis are paralogs of genes whose products are known to function only during meiosis. Therefore, these meiotic genes likely arose by duplication events that occurred prior to the LECA. The Rad51 protein catalyzes DNA strand exchange during both mitosis and meiosis, while Dmc1 catalyzes interhomolog DNA strand exchange only during meiosis. To study the evolution of these important proteins, we performed degenerate PCR and extensive nucleotide and protein sequence database searches to obtain data from representatives of all available eukaryotic supergroups. We also performed phylogenetic analyses on the Rad51 and Dmc1 protein sequence data obtained to evaluate their utility as phylogenetic markers. We determined that evolutionary relationships of five of the six currently recognized eukaryotic supergroups are supported with Bayesian phylogenetic analyses. Using this dataset, we also identified ten amino acid residues that are highly conserved among Rad51 and Dmc1 protein sequences and, therefore, are likely to confer protein-specific functions. Due to the distributions of these residues, they are likely to have been present in the Rad51 and Dmc1 proteins of the LECA.
To address an important issue with the gene inventory method of scientific inquiry, we developed a heuristic metric for determining whether apparent gene absences are due to limitations of the sequence search regimen or represent true losses of genes from genomes. We collected RNA polymerase I (Pol I), Replication Protein A (RPA), and DNA strand exchange (SE) sequence data from 47 diverse eukaryotes. We then compared the numbers of apparent absences to a single measure of protein sequence length and sequence conservation (Smith-Waterman pairwise alignment (S-W) scores) obtained by comparing yeast and human protein sequence data. Using Poisson correlation regression to analyze the Pol I and RPA subunit datasets, we confirmed that S-W scores and apparent gene absences are correlated. We also determined that genes encoding products that are critical for interhomolog SE in model organisms (Rad52, Rad51, Dmc1, Rad54, and Rdh54) have been lost frequently during eukaryotic evolution. Saccharomyces cerevisiae null rad52, dmc1, rad54, and rdh54 mutant phenotypes are suppressed by rad51 overexpression or mutation. If rad51 overexpression or mutation affects other eukaryotes in a similar fashion, this phenomenon may account for frequent losses of genes whose products are critical for the completion of meiosis in model organisms. Finally, we place this work into greater context with a review of hypotheses for the selective forces and mechanisms that resulted in the origin of meiosis. The review and the data presented in this thesis provide the basis for a model of the origin of meiotic genes in which meiosis arose from mitosis by large-scale gene duplication, following a preadaptation that served to reduce increased numbers of chromosomes (from diploid to haploid) caused by erroneous eukaryotic cell-cell fusions.
|
3 |
Caracterização Funcional e Determinação da Estrutura Tridimensional por Cristalografia de Raios X da Proteína RecA de Herbaspirillum seropedicaeLeite, Wellington Claiton 06 September 2016 (has links)
Made available in DSpace on 2017-07-21T19:25:54Z (GMT). No. of bitstreams: 1
Wellington Claiton Leite.pdf: 3789073 bytes, checksum: f4c16b4260fbd54f4eada652038ae5bc (MD5)
Previous issue date: 2016-09-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The bacterial RecA protein plays a role in the complex system of DNA damage repair. In the presence of ATP, RecA proteins polymerize onto single-strand DNA (ssDNA) as righthanded
helical nucleoprotein laments, and catalyze strand exchange reaction between the ssDNA and homologous double-strand DNA (dsDNA) molecules. These activities are supported or stimulated by accessory proteins, as the single-stranded binding protein (SSB).Here, we report a functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA).We report the crystal structure of HsRecA-ADP/ATP complex to 1.7 Å of atomic resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, similarly to homologous RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. The bacterial polymerization motif contains the sequence SV/IMR/KLG which interacts with the core ATPase domain residues DNLLLV/CS. In the inactive RecA, it is a loop - strand interaction, respectively, while in the active RecA it becomes a dyad strand. In both RecA forms, the polymerization motif seems to stabilize the subunitsubunit interface by hydrophobic interactions. The methionine of this motif may play an important role in the stability and formation of a right-handed helical nucleoprotein lament. The ATPase activity and the structure of the nucleoprotein lament of HsRecA and Escherichia coli RecA (EcRecA) were analyzed in the presence and absence of SSB.
When SSB was added after RecA+ssDNA, HsRecA and EcRecA showed similar ATPase activity and nucleolament structure. However, when SSB was either not included or it was added before RecA+ssDNA, the HsRecA showed higher ATPase activity and formed longer nucleoprotein laments than EcRecA. Thus, HsRecA protein is more ecient at displacing SSB from ssDNA than EcRecA protein. HsRecA promoted DNA exchange
more eficiently: a greater yield of nicked circular products were obtained in a shorter time. Reconstruction of electrostatic potential from the hexameric structure of HsRecAADP/
ATP revealed a high positive charge along the inner side, which is consistent with the fact that ssDNA binds inside the filament. It may explain the enhance capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace
SSB and promote eficiently the DNA strand exchange reaction.
Keywords: RecA, Crystallography, RecA nucleoprotein filament, ATPase activity, DNA strand exchange, crystal structure, structural analysis. / A proteína RecA bacteriana desempenha um importante papel no complexo sistema de reparo de danos ao DNA. Na presença de ATP, a proteína RecA se auto-polimeriza sobre o DNA simples ta (ssDNA) (do inglês single-strand DNA (ssDNA)) como um lamento
de nucleoproteína helicoidal, cataliza a reação de troca de fitas entre as moléculas ssDNA e a ta de DNA dupla fita homóloga (dsDNA) (do inglês double-strand DNA (dsDNA)). Estas atividades são suportadas ou estimuladas por proteínas acessórias, como a proteína ligadora de ssDNA SSB (do inglês single-stranded binding protein (SSB)). Neste trabalho
é apresentado a caracterização estrutural e funcional da proteína RecA da bactéria Herbaspirillum seropedicae. A estrutura tridimensional do complexo HsRecA-ADP/ATP foi
resolvida numa resolução 1,7 Å. A estrutura monomérica da proteína HsRecA consiste em um pequeno domínio N-terminal, um domínio central contendo um sitío ATPásico e e um
grande domínio C-terminal, similar com proteínas RecAs homólogas. Análises estruturais comparativas mostraram que o motivo de polimerização da região N-terminal de proteí-
nas da familia RecA que incluem archaea e eucariotos, também está presente na proteína RecA bacteriana. O motivo de polimerização da região N-terminal de bactérias contêm a
sequência de resíduos (Serina, Valina ou Isoleucina, Metionina, Arginina ou Lisina, Leucina, Glicina) que interage com a sequência de resíduos do core ATPásico (Aspartato,
Asparagina, Leucina, Leucina, Leucina, Valina, Cisteína, Serina). Na proteína RecA inativa esta interação é do tipo loop - strand, respectivamente, enquanto na proteína RecA ativa essa interação se torna uma dupla -strand. Em ambas formas da RecA, o motivo de polimerização parece estabilizar a interface subunidade-subunidade por interações hidrofóbicas. No motivo N-terminal a presença de uma Metionina altamente conservada
talvez desempenha um importante papel na estabilidade e formação do lamento de nucleoproteína. A atividade ATPásica e a estrutura do lamento de nucleoproteína da proteína HsRecA e da Escherichia coli RecA (EcRecA) foram analisadas na presença e ausência da proteína SSB. Quando a SSB foi adicionada após RecA+ssDNA, as proteínas HsRecA e EcRecA mostraram similar atividade ATPásica e estrutura de nucleo lamento. Entretanto, quando a SSB não estava incluída ou quando adicionada anteriormente a adição RecA+ssDNA, a proteína HsRecA mostrou maior atividade ATPásica e formou maiores lamentos de nucleoproteína que a proteína EcRecA. Ainda, a proteína HsRecA é mais eficiente em deslocar a SSB do ssDNA que a proteína EcRecA. A proteína HsRecA também promove a reação de troca de fitas mais eficientemente: uma maior quantidade de produtos duplex substrato convertido em duplex circular foram obtidos em um curto intervalo de tempo. A reconstrução do potencial eletrostático da estrutura hexamérica da proteína HsRecA revelou uma maior densidade de cargas positivas no seu interior, que é consistente com o fato que o ssDNA ligar-se internamente ao filamento hexamérico. Isto talvez possa explicar capacidade melhorada da proteína HsRecA ligar-se ao ssDNA, formando um continuo filamento de nucleoproteína, deslocando a SSB e ainda promovendo de forma eficiente a reação de trocas de fitas.
|
4 |
L’identification de nouvelles activités chez les complexes Polycomb les lient aux structures d’ADN non-canoniquesAlecki, Célia 06 1900 (has links)
Les protéines du groupe Polycomb (PcG) sont des protéines essentielles et conservées, qui forment deux complexes principaux, PRC1 et PRC2, qui sont recrutés au niveau de la chromatine et qui répriment stablement l’expression génique. Chez Drosophila melanogaster, les complexes Polycomb sont recrutés à des éléments d’ADN appelés éléments de réponse Polycomb (PREs) pour réprimer la transcription. PREs sont des éléments mémoires permutables qui peuvent maintenir la répression ou l’expression génique. Malgré des dizaines d’années d’étude, des questions fondamentales sur le fonctionnement du système PcG subsistent. 1) Comment les protéines PcG sont recrutées aux PREs uniquement lors du contexte développemental approprié, et comment les PREs peuvent conduire à la fois à l’activation et à la répression stable. 2) Comment les complexes PcG répriment la transcription, et si cela implique de nouvelles activités biochimiques et interactions. 3) Comment la répression dépendante des PcG peut-elle être propagé à travers le cycle cellulaire. La recherche de nouvelles activités biochimiques pour les complexes PcG pouvant répondre à ces questions fait l’objet de cette thèse.
Les PREs sont transcrits en ARN qui pourraient donner la spécificité de contexte pour recruter les protéines PcG. Nous avons supposé que des R-loops puissent se former aux PREs, et être reconnues par les complexes Polycomb, ce que vous avons testé dans le chapitre 2. Nous avons identifié les séquences formant des R-loops dans des embryons et une lignée cellulaire de Drosophila melanogaster, et nous avons trouvé que ~30% des PREs forment des R-loops. Nous avons découvert que les PREs ayant formé des R-loops ont une plus forte probabilité d’être liés par les protéines PcG in vivo et in vitro. PRC2 lie des milliers d’ARN in vivo, mais aucune fonction claire n’y a été associée. En utilisant des expériences in vitro, nous avons identifié une activité d’invasion de brins pour PRC2 qui induit la formation d’hybride ARN-ADN, la partie principale d’une R-loop. Dans ce chapitre, nous avons trouvé que les PREs forment des R-loops, et sont impliquées dans le recrutement des protéines PcG qui induisent la répression génique stable. Nous avons découvert une activité d’invasion de brins pour PRC2 qui pourrait impliquer ce complexe Polycomb dans la formation de R-loops in vivo.
Dans le chapitre 3, nous avons identifié une activité similaire à celle de la topoisomérase I associée avec PRC1 et la région C-terminale de sa sous-unité PSC (PSC-CTR). PRC1 et PSC-CTR peuvent relaxer un plasmide surenroulé négativement et ajouter des supertours négatifs à un plasmide relaxé en absence de topoisomérase. Cette activité suggère que la régulation de la topologie de l’ADN puisse être un nouveau mécanisme utilisé par les complexes PcG. PRC1 peut résoudre les R-loops formées sur un ADN négativement surenroulé in vitro. Une fonction possible pour cette activité de topoisomérase peut être la régulation des R-loops, dont la stabilité dépend à la fois de la séquence d’ADN et de la topologie de l’ADN environnant, in vivo.
Dans cette thèse, nous avons identifié de nouvelles activités chez les complexes PcG : une activité d’invasion de brins pour PRC2 et une activité similaire à celle des topoisomérases pour PRC1. Ces deux activités impliquent les complexes PcG dans la formation et la résolution de R-loops. De plus, ces deux complexes peuvent reconnaitre les R-loops et sont recrutés aux PREs ayant formé ces structures. En conclusion, nous avons identifié de nouvelles activités pour les complexes Polycomb PRC1 et PRC2 qui les lient à la formation, la reconnaissance et la résolution de R-loops. / Polycomb group (PcG) proteins are conserved, essential proteins, which assemble in two main complexes, PRC1 and PRC2, which are targeted to chromatin and stably repress gene expression. In Drosophila melanogaster, Polycomb complexes are targeted to DNA elements called Polycomb response elements (PREs) to repress transcription. PREs are switchable memory elements that can maintain either gene repression or gene activation. Despite decades of study, fundamental questions about how the PcG system functions remain. These include: 1) how PcG proteins are targeted to PREs only in the appropriate developmental context, and how PREs can mediate both stable activation and repression; 2) how PcG complexes repress transcription, and whether it involves novel biochemical mechanisms and interactions; 3) how PcG repression can be propagated through cell cycles. The search for new biochemical activities for PcG complexes that may answer these questions is the topic of this thesis.
PREs are transcribed into RNAs which may give the context specificity to recruit PcG proteins. We hypothesized that R-loops may form at PREs, and be recognized by PcG complexes, which we tested in Chapter 2. We identified R-loop forming sequences in Drosophila melanogaster embryos and tissue culture cells, and found that ~30% of the PREs form R-loops. We found that PREs which have formed R-loops are more likely to be bound by PcG proteins both in vivo and in vitro. PRC2 binds to thousand RNA in vivo but no clear activity has been associated with it. Using in vitro assays, we identified a strand exchange activity for PRC2 which induces the formation of RNA-DNA hybrid, the main part of an R-loop. In this chapter, we have found that PREs form R-loops and are involved in the targeting of PcG proteins which induce stable gene repression. We have discovered an RNA strand exchange activity for PRC2 which may involve this Polycomb complex in the formation of R-loops in vivo.
In Chapter 3, we identified a type I topoisomerase-like activity associated with PRC1 and the C-terminal region of its subunit PSC (PSC-CTR). PRC1 and PSC-CTR can relax a negatively supercoiled plasmid and add negative coils to a relaxed plasmid in absence of topoisomerase. This activity suggests regulation of DNA topology may be a novel mechanism used by PcG complexes. PRC1 can resolve R-loops formed on negatively supercoiled DNA in vitro. One role for the topoisomerase-like activity may be to regulate R-loops, whose stability of depends on both the DNA sequence and the topology of the surrounding DNA, in vivo.
In this thesis, we identified new activities for Polycomb group complexes: an RNA strand exchange activity for PRC2 and a topoisomerase-like activity for PRC1. Both activities link PcG complexes to the formation and resolution of R-loops. In addition, both complexes can recognize R-loops and are recruited to PREs which have formed these structures. In conclusion, we have identified new nucleic acid-based activities for the Polycomb complexes PRC1 and PRC2, which link them to the formation, recognition and resolution of R-loops.
|
Page generated in 0.0667 seconds