• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 222
  • 51
  • 33
  • 11
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 387
  • 101
  • 95
  • 65
  • 65
  • 50
  • 50
  • 49
  • 45
  • 41
  • 40
  • 40
  • 36
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Hydrogeologic analysis of streamflow in relation to underground mining in northern West Virginia

Gill, D. Robert January 2000 (has links)
Thesis (M.S.)--West Virginia University, 2000. / Title from document title page. Document formatted into pages; contains xii, 140 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 120-122).
152

A comparative study of flow forecasting in the Humber River Basin using a deterministic hydrologic model and a dynamic regression statistical model /

Picco, Robert C., January 1997 (has links)
Thesis (M. Eng.), Memorial University of Newfoundland, 1998. / Bibliography: leaves 88-90.
153

Hyporheic flow and heat transport across a bed-to-bank transect of a large regulated river Colorado River, Austin, Tx /

Gerecht, Katelyn Elizabeth. January 2010 (has links)
Honors Project--Smith College, Northampton, Mass., 2010. / Includes bibliographical references (p. 45-48).
154

Influence of stream corridor geomorphology on large wood jams and associated fish assemblages in mixed deciduous-conifer forest in Upper Michigan

Morris, Arthur E. L. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xvi, 263 p.; also includes graphics (some col.). Includes bibliographical references (p. 241-263). Available online via OhioLINK's ETD Center
155

Changes in hyporheic exchange flow following experimental large wood removal in a second order, low gradient stream, Chichagof Island, AK /

LaNier, Justin. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 60-63). Also available on the World Wide Web.
156

Reconstructing streamflow in the Upper Rio Grande River Basin

Correa, Karina Elena, January 2007 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2007. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
157

Changing Streamflow Patterns in the New England Region: Implications for Ecosystem Services, Water Users and Sustainable Resources Management

Ricupero, Krista January 2009 (has links) (PDF)
No description available.
158

SEASONAL VARIATION IN TEMPERATURE, PRECIPITATION AND STREAMFLOW ACROSS THE MIDWESTERN UNITED STATES

Pathak, Pratik 01 December 2016 (has links)
A great deal of attention has been given to global climate change by the hydrologic community. Temperature, precipitation and streamflow trend analysis, on different spatial and temporal scales, is important in understanding the impact of climate change. Midwest region is the heartland of agriculture production in U.S., and change in hydrologic variables may affect both quantity and quality of production. In the study, mean, maximum and minimum temperature along with mean precipitation for 106 climate divisions in the Midwest were analyzed to test the existence of monotonic trend and shift changes in the seasonal hydrological time series. In addition to that, trend and shift in 88 streamflow stations in the Midwest and its relation with temperature and precipitation were analyzed. Mann Kendall test with and without considering lag-1 auto-correlation were employed to analyze the trend. Non-parametric Pettitt test was used to analyze the shift; Sen’s slope estimator was used to identify the magnitude of hydrological trend. Discrete Wavelet analysis was done to analyze the effect of periodicities on trends and shifts in hydrological variables. In addition, association between the occurrence of shifts and phases of climate indices, such as El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), was investigated. The results indicated significant increasing trend in mean and minimum temperature for majority of the climate divisions in all the seasons studied. While, increase in maximum temperature in winter and spring was observed, majority of the climate divisions showed decreasing trend in summer and fall. Increasing trend in precipitation was detected mostly in spring, summer and fall as compared to winter. Persistence was mostly observed for all the variables during the summer season and when accounted for, trend remained for most of the climate divisions. Spatially prevalent shifts were noticed, which were in agreement with gradual trend for most of the hydrologic variables. The results of the wavelet analysis indicated D2 (dyadic scale of 4 years) and D3 (dyadic scale of 8 years) to be the most effective periodic component in detecting trend in winter, spring and summer. D1 (dyadic scale of 2 years) and D3 proved to be the most effective in detecting trend in temperature data in fall. Likewise, precipitation and streamflow showed the dominance of D3 component in detecting real trend in the data. Majority of shift changes coincided with PDO and ENSO phases. The use of wavelet helped in detecting the typical timescale of ENSO and the effect of coupled climate indices on hydrologic variables. A possible linkage between streamflow, temperature and precipitation trend across some regions were detected clearly corroborating the importance of exploring the synergism between meteorological, climatic and hydrologic factors to assess the changing character of the variables. The contribution from this research include a better understanding of the changes in the hydrology of the Midwest that can help in better water management decisions.
159

ANALYZING STREAMFLOW VARIABILITY UNDER CMIP5 PROJECTIONS USING SWAT MODEL

Bhandari, Ranjit 01 August 2018 (has links)
For analyzing the effect of climate change on the streamflow at a regional scale, six General Circulation Models (GCMs) were selected from among eighteen GCMs from the Coupled Model Intercomparison Project (CMIP5) for the Pajaro River Watershed in central California. The 1/8° latitude-longitude resolution bias-corrected and downscaled CMIP5 projections were utilized for an ensemble of GCMs under four Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). The twenty-first century is segregated into three time-periods (2016-2039, 2040-2069 and 2070-2099) for comparing the streamflow against changing precipitation and temperature according to the CMIP5 projections. The daily maximum and daily minimum temperature are projected to consistently rise through to the latter part of the century. Csiro-mk3-6 and canesm2 models project an increase of 3.1°C in annual average daily maximum temperature and 3.4°C in annual average daily minimum temperature respectively in 2070-2099 period under RCP8.5 scenarios. Future precipitation is projected to increase in January and February, which means the wet months in the Pajaro River Watershed are likely to get more rainfall. The dry months would continue to receive diminished precipitation throughout the century. The streamflow was increasing on future January, and sporadically, in February months but diminished during the dry months. The range of annual average streamflow for the future years stretched from 0.1 to 29.1 m3/s for the GCM ensemble, mostly close to the lower limit. The results suggest considering multiple climate change scenarios and evaluating alternative setups would provide a robust basis for hydrological assessment.
160

Conductive and convective heat transfer in sediments near streams

Lapham, Wayne Wright, Lapham, Wayne Wright January 1988 (has links)
An Fourier Series solution is presented that describes the simultaneous, one-dimensional, vertical flow of heat and ground water in homogeneous, porous media beneath streams. Use of this analytical solution provides an indirect method of determining vertical flow rates and the effective vertical hydraulic connection between sediments and overlying streams. The method consists of varying the Darcy velocity in the solution until the temperature profiles predicted by the solution match those measured in the field. The method was applied at three field sites in Central Massachusetts. At the first site, which is underlain by lacustrine clay, the vertical flow rate through the clay was determined to be less than 5x10⁻⁷ cm/s and the vertical hydraulic conductivity was less than 0.08 cm/s. The vertical flow rate through mixed sand and gravel underlying the second site equaled 7.5x10⁻⁶ cm/s and vertical hydraulic conductivities of sediments underlying the site ranged from 3.8x10⁻⁴ to 3.1x10⁻³ cm/s. The vertical flow rate through mixed sand and gravel underlying the third site ranged from 3x10⁻⁵ to 7x10⁻⁵ cm/s and vertical hydraulic conductivities of sediments underlying the site ranged from 1x10⁻³ to 4x10⁻³ cm/s. The simultaneous flow of heat and ground water in sediments beneath streams may be more complex than that assumed for the Fourier Series solution. The additional complexity may be partially attributable to two factors: the presence of horizontal ground-water flow, and the presence of thermal conditions near the stream that differ from conditions in the stream itself. The effects of that these two factors have on thermal regimes in sediments beneath streams were investigated using numerical simulations. Results indicate, for example, that under conditions of no horizontal ground-water flow, thermal conditions near the stream can affect temperatures in sediments beneath the stream as far as 900 cm from the stream bank. For horizontal flow rates greater than about 1x10⁻⁴ cm/s, thermal conditions near the stream can affect temperatures in sediments beneath the stream as far as 1500 cm from the stream bank. The method of determining flow rates and hydraulic connection has been applied to stream-aquifer systems. However, the method also may have application in other hydrologic settings. Two such applications might be to determine flow rates to and from lakes and rates of recharge to aquifers.

Page generated in 0.0337 seconds