• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 1
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 64
  • 61
  • 53
  • 50
  • 29
  • 28
  • 28
  • 28
  • 28
  • 22
  • 18
  • 16
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Optimalizace tvaru nového typu obvodového závěsu pro lopatky parních turbín / Shape optimization of new circumferential steam turbine blade attachment type

Mívalt, Tomáš January 2017 (has links)
This thesis describes selection and shows calibration of material model, capable of describing cyclic softening of material. Stress-strain FEM analysis of circumferential blade attachment for last section of rotor blades of steam turbine is performed, expected lifetime of existing attachment is evaluated. Multi-parameter optimization of new-shape attachment was done, resulting in dimensions for new-shape attachment with longer lifetime. Improvements in strain amount in comparison with existing attachment were evaluated and possible RPM increase of turbine with new attachment type was calculated.
42

Mechanická studie interakce páteřního segmentu s poddajným fixátorem / Biomechanical Study of Interaction between Spinal Segment and Malleable Fixation Device

Manek, Filip January 2014 (has links)
This doctoral thesis is focused on comparative stress strain analysis of a spinal segment with a malleable fixation device and a physiologic spinal segment. In its opening a research study from available sources is carried out. It covers the contemporary state of scientific studies in the given area, anatomy of individual components of the spine, material properties, ways and magnitudes of loadings and also the most common FE model used in similar problems solved. To create a model of geometry of a spinal segment CT scans of a spinal segment of a 38-year-old woman are used. Then they are subsequently used in the modeling software SolidWorks to create the model of geometry of two lumbar vertebras L4 - L5 and a malleable fixation device. Using the computational system ANSYS Workbench, the complete computational model of the spinal motional segment with a malleable fixation device is compiled, covering models of material, loading and bonds. On the basis of the computational solution of FEM models for different ways of loading, a stress-strain analysis is performed. To compare obtained results a detailed comparative analysis with the physiological spinal segment, the segment with the degenerated disc and the segment with applied "rigid" fixation device is carried out. Within the stress strain analysis of the spinal segment with malleable fixation device, an analysis of the magnitude of the strain intensity of spongious bone tissue around the implanted transpedicular screw, depending on the cord pretension of the malleable fixation device, is performed.
43

Pevnostní návrh ostruhy letadla / Strength design of the aircraft spur

Profota, Martin January 2017 (has links)
This master thesis deals with computational stress-strain analysis of the tailskid of airplane L410 NG with main focus firstly the check current design of the tailskid and then the design another design solution with the able to absorb as much as possible the deformation energy. Solution of this problem is performed using computational modeling utilizing numerical simulation of quasi-static and crash deformation load of the tailskid with using explicit Finite Element Method (FEM) in program ABAQUS v6.14. After the introduction with problem situation and tailskid assembly introductory part is devoted to the research study of various designs of the tailskid for different types of airplanes. There follows these theoretical general principles of thin-walled structures and buckling of them. Before the creating of the computational model itself, the explicit form of the Finite Element Method is better described. The conclusion of this thesis deals with the mutual comparison of the most advantageous design variants of the tailskid and the selection of the most suitable one of them for the airplane L410 NG.
44

Návrh zařízení pro měření výškové polohy těžiště automobilu / Design of Device for Vehicle Center of Gravity Height Measurement

Rektořík, Jiří January 2017 (has links)
The objective of this diploma thesis is the design of a device that measures the vehicle’s centre of gravity height position. The first part defines individual methods of measurement using various measuring equipment. The next part deals with the definition of requirements for the device and the definition of the design. A stress-strain analysis was executed for selected components. This diploma thesis describes the preparation process of the vehicle and the device for the measurement. The next part is dedicated to the design of the measuring chain and to the evaluation of the results. The thesis concludes with a theoretic analysis of the measurement inaccuracy.
45

Deformačně napěťová studie Burch-Schneiderovy dlahy / Strain Stress Study of Burch-Schneider Split

Řehák, Kamil January 2018 (has links)
This thesis deals with problems of the hip endoprosthetics area, namely total endoprosthesis (TEP) with Burch-Schneider (BS) split, in which there are many problems in clinical practice. The hip joint load depends on the patient weight and the performed activity. Sedentary job, little exercise, a lot of stress or poor eating habits and overweight associated with it affect negatively hip joint. Increasing hip joint wear and its pain in movement is necessary in several cases to be solved by a surgical procedure in which TEP is applied. When selecting and subsequently applying individual TEP, it is important to pay attention to creating conditions which will allow good fixation. In case of worse mechanical properties of bone tissue, it is very problematic to ensure stability of the implant. Based on several classifications which assess the degree of hip joint damage, it is possible to select a suitable TEP. The BS split, on which this work is focused, is dominantly used in cases of large defects in the acetabulum area. The use of this cage allows to bridgelarge defects and create a new centre of rotation of the hip. Knowledge of the mechanical properties of hip bone tissue can significantly affect the prediction of BS split damage. For this purpose, it was necessary to perform a biomechanical study, which is focused on the influence of worse mechanical properties of bone tissue on BS split failure. The computational modelling using finite element method implemented in the ANSY S software was used for the solution, which enables to solve the mechanical interaction between bone tissue and TEP with BS split. Due to the absence of bone tissue data before application of TEP with BS split, the variants before application of TEP and after application of resurfacing and standard TEP were solved. All variants were solved with the material properties of bone tissue that were determined based on CT images. In addition, all variants were solved for the case of degraded mechanical properties. Based on the numerical simulations results and the Mechanostat hypothesis, a bone tissue analysis of the hip joint was performed before and after application of TEP and TEP with BS split. The results show the influence of the computational model level, which considers the distribution of bone tissue through the inhomogeneous model of the material. Therefore, the degraded mechanical properties have a major impact on the stability and strain of the BS split, particularly in the cranial part of the acetabulum.
46

Deformačně a napěťová analýza čelisti se zubním implantátem BOI / Stress - strain analysis of jaw with tooth implant type BOI

Marcián, Petr January 2008 (has links)
Submitted master thesis deals with stress - strain analysis of jaw, with dental implant. The implant serve as a suitable pillar for crown or dental bridge, when one or more teeth are lost. The project is oriented on BOI (basale - oseo - integrable) dental implant type, which is produced by DENTALIHDE company. Stress – strain condition of the mandible system with implant have been established by computational simulation, with use of the final elements method. Important part of down jowl is simulated on with EDS and EDDS applied types of implants. After implementation the implant begins to heal. Therefore the special attention is paid to stress - strain states on various level of osteointegration. There is a detail description of production of single part computational model and his solving in the master thesis. Presentation of large chapter with results and subsequent alteration stress - strain analysis is part of the master thesis. Program SolidWorks 2005 was used to create the geometric model. Computational model and the actual solving was accomplished with use of ANSYS 11.0 and ANSYS Wor-kbench systems.
47

Deformační a napěťová analýza dolní čelisti s fixátorem / Stress-Strain Analysis of Mandible with Fixator

Semerák, Jaroslav January 2018 (has links)
This diploma thesis deals with fixation of the lower jaw fractures using commercially produced fixators. The topic was researched on the basis of the available literature. The thesis also indicates basic anatomy of the surveyed area and nowadays the most commonly used materials. Subsequently, the stress-strain analysis of the lower jaw with the applied angular stable fixation plate was performed. The solution was performed for the lower jaw with a fracture in the area of the condyle with different types of fixation plates made of CP-Ti Grade 4. In addition, the strain analysis of the healed lower jaw with the fixators after the defect in the area of chin and angle was performed. The mechanical interaction analysis of the lower jaw with defect and applied fixation plate was solved by using computational modeling with variational approach, in use of the finite element method in Ansys Workbench 18.1. The thesis also describes in detail the creation of a computational model of the system and the subsequent solution.
48

Analýza vlivu směrové distribuce kolagenních vláken ve stěně tepny na její mechanické vlastnosti / Analysis of impact of direction distribution of collagen fibres in arterial wall on its mechanical properties

Fischer, Jiří January 2020 (has links)
The aim of this thesis is to analyse literature with focusing on literature about directional distribution of collagen fibres. This knowledge is very important for computational modelling and FEM analysis of arterial wall. Comparison of suitability of different models of directional distribution of collagen fibres is made by fitting of different types of probability density functions. Impact assessment of different collagen fibres distribution on mechanical properties of the arterial wall and impact assessment of wall anisotropy is solved with finite element method. FEM analysis is done on three loading types – uniaxial tension, equibiaxial tension and inflation of artery by internal pressure. Output of this thesis is evaluation of results for various types of collagen fibres arrangement in arterial wall.
49

Pevnostně deformační analýza uchycení filtru pevných částic na traktoru / Stress-strain Analysis of Diesel Particulate Filter Support on Tractor

Ježek, Přemysl January 2012 (has links)
The subject of this thesis is to carry out stress-strain analysis of diesel particulate filter support on tractor. So it describes sequence of steps for the analysis model, such as geometry description, mesh generation, applied forces definition and others. Result of the analysis is assessed in terms of strength and improvement was proposed.
50

Pevnostně deformační analýza uchycení filtru pevných částic na traktoru Zetor Forterra / Stress-strain Analysis of Diesel Particulate Filter Support on Tractor Zetor Forterra

Kučera, Petr January 2014 (has links)
The subject of this master's thesis is the FEM analysis of the construction of the diesel particulate filter support on the tractor Zetor Forterra. The introduction of this thesis is about the theoretical part dealing with the issue of emissions from diesel engines and ways to reduce them. The following part describing the creation of the computational model. Then, the static stress-strain analysis, modal analysis and fatigue analysis are solved in the ANSYS Workbench software. The assessment of the safety of the structure in terms of limit states, that may occur during the operation of the tractor, based on the results of calculations is in the conclusion of the thesis.

Page generated in 0.0622 seconds