• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 4
  • 4
  • Tagged with
  • 29
  • 29
  • 29
  • 29
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Enhanced piezoelectric energy harvesting powered wireless sensor nodes using passive interfaces and power management approach

Giuliano, Alessandro January 2014 (has links)
Low-frequency vibrations typically occur in many practical structures and systems when in use, for example, in aerospaces and industrial machines. Piezoelectric materials feature compactness, lightweight, high integration potential, and permit to transduce mechanical energy from vibrations into electrical energy. Because of their properties, piezoelectric materials have been receiving growing interest during the last decades as potential vibration- harvested energy generators for the proliferating number of embeddable wireless sensor systems in applications such as structural health monitoring (SHM). The basic idea behind piezoelectric energy harvesting (PEH) powered architectures, or energy harvesting (EH) more in general, is to develop truly “fit and forget” solutions that allow reducing physical installations and burdens to maintenance over battery-powered systems. However, due to the low mechanical energy available under low-frequency conditions and the relatively high power consumption of wireless sensor nodes, PEH from low-frequency vibrations is a challenge that needs to be addressed for the majority of the practical cases. Simply saying, the energy harvested from low-frequency vibrations is not high enough to power wireless sensor nodes or the power consumption of the wireless sensor nodes is higher than the harvested energy. This represents a main barrier to the widespread use of PEH technology at the current state of the development, despite the advantages it may offer. The main contribution of this research work concerns the proposal of a novel EH circuitry, which is based on a whole-system approach, in order to develop enhanced PEH powered wireless sensor nodes, hence to compensate the existing mismatch between harvested and demanded energy. By whole-system approach, it is meant that this work develops an integrated system-of-systems rather than a single EH unit, thus getting closer to the industrial need of a ready- to-use energy-autonomous solution for wireless sensor applications such as SHM. To achieve so, this work introduces: Novel passive interfaces in connection with the piezoelectric harvester that permit to extract more energy from it (i.e., a complex conjugate impedance matching (CCIM) interface, which uses a PC permalloy toroidal coil to achieve a large inductive reactance with a centimetre- scaled size at low frequency; and interfaces for resonant PEH applications, which exploit the harvester‟s displacement to achieve a mechanical amplification of the input force, a magnetic and a mechanical activation of a synchronised switching harvesting on inductor (SSHI) mechanism). A novel power management approach, which permits to minimise the power consumption for conditioning the transduced signal and optimises the flow of the harvested energy towards a custom-developed wireless sensor communication node (WSCN) through a dedicated energy-aware interface (EAI); where the EAI is based on a voltage sensing device across a capacitive energy storage. Theoretical and experimental analyses of the developed systems are carried in connection with resistive loads and the WSCN under excitations of low frequency and strain/acceleration levels typical of two potential energy- autonomous applications, that are: 1) wireless condition monitoring of commercial aircraft wings through non-resonant PEH based on Macro-Fibre Composite (MFC) material bonded to aluminium and composite substrates; and wireless condition monitoring of large industrial machinery through resonant PEH based on a cantilever structure. shown that under similar testing conditions the developed systems feature a performance in comparison with other architectures reported in the literature or currently available on the market. Power levels up to 12.16 mW and 116.6 µW were respectively measured across an optimal resistive load of 66 277 kΩ for an implemented non-resonant MFC energy harvester on aluminium substrate and a resonant cantilever-based structure when no interfaces were added into the circuits. When the WSCN was connected to the harvesters in place of the resistive loads, data transmissions as fast as 0.4 and s were also respectively measured. By use of the implemented passive interfaces, a maximum power enhancement of around 95% and 452% was achieved in the two tested cases and faster data transmissions obtained with a maximum percentage improvement around 36% and 73%, respectively. By the use of the EAI in connection with the WSCN, results have also shown that the overall system‟s power consumption is as low as a few microwatts during non- active modes of operation (i.e., before the WSCN starts data acquisition and transmission to a base station). Through the introduction of the developed interfaces, this research work takes a whole-system approach and brings about the capability to continuously power wireless sensor nodes entirely from vibration-harvested energy in time intervals of a few seconds or fractions of a second once they have been firstly activated. Therefore, such an approach has potential to be used for real-world energy- autonomous applications of SHM.
12

Contrôle santé des structures composites : génération de délaminages par choc laser et quantification par apprentissage machine / Structural Health Monitoring of composite structures : LASER shock delamination generation and machine learning-based quantification

Ghrib, Meriem 07 December 2017 (has links)
Dans ce travail, nous abordons la quantification de dommage de type délaminage dans des stratifiés en CFRP. Le problème de quantification est transformé en un problème de classification multiclasses au sens de l'apprentissage statistique. Chaque classe correspond à une certaine sévérité de dommage. Le modèle de machine à vecteurs de support (SVM) est utilisé pour effectuer la classification. Généralement, des descripteurs de dommage basés sur une utilisation directe des signaux mesurés (SBF) sont utilisés pour apprendre les modèles décisionnels. Dans ce travail, nous nous basons sur l'hypothèse qu'un dommage génère nécessairement une part de non linéarité dans la réponse dynamique de la structure et nous investiguons la pertinence de l'utilisation de descripteurs de dommage basés sur un modèle non linéaire (NMBF) pour améliorer les performances du modèle décisionnel. Les NMBF proposés sont calculés en se basant sur le modèle de Hammerstein en parallèle identifié avec un signal de type "sweep exponentiel". Une réduction de dimension du vecteur des caractéristiques en utilisant l'ACP est également conduite et son effet sur les performances du processus de quantification suggéré est étudié. L'approche de quantification proposée a été testée et validée en utilisant des résultats de simulation puis des résultats expérimentaux obtenus sur des plaques composites en CFRP équipées d'éléments piézoélectriques et contenant diverses sévérités de délaminage. Les dommages de type délaminage ont été générés au sein des échantillons de manière calibrée et réaliste à l'aide de la technique du choc LASER et plus particulièrement du choc LASER symétrique. Nous avons démontré expérimentalement que cette configuration de choc LASER est une alternative efficace aux méthodes classiques de génération de dommage telles que les impacts classiques et les patches de Téflon, permettant une meilleure calibration du dommage en type, profondeur et taille. / In this work, we approach delamination quantification in Carbon Fiber Reinforced Polymer (CFRP) laminates as a classification problem whereby each class corresponds to a certain damage extent. A Support Vector Machine (SVM) is used to perform multi-class classification task. Classically, Signal Based Features (SBF) are used to train SVMs when approaching SHM from a machine learning perspective. In this work, starting from the assumption that damage causes a structure to exhibit nonlinear response, we investigate whether the use of Nonlinear Model Based Features (NMBF) increases classification performance. NMBF are computed based on parallel Hammerstein models which are identified with an Exponential Sine Sweep (ESS) signal. Dimensionality reduction of features vector using Principal Component Analysis (PCA) is also conducted in order to find out if it allows robustifying the quantification process suggested in this work. The proposed quantification approach was first tested and validated using simulation results. Thereafter, experimental results on CFRP composite plates equipped with piezoelectric elements and containing various delamination severities are considered for demonstration. Delamination-type damage is introduced into samples in a calibrated and realistic way using LASER Shock Wave Technique (LSWT) and more particularly symmetrical LASER shock configuration. We have experimentally demonstrated that such a configuration of LASER shock is an effective alternative to conventional damage generation techniques such as conventional impacts and Teflon inserts since it allows for a better calibration of damage in type, depth and size.
13

A Study On Characterization Of Failure Modes In Composites By Acoustic Emission Using PVDF Film Sensor For Health Monitoring

Nandan Bar, Himadri 02 1900 (has links) (PDF)
No description available.
14

Artificial Intelligence Guided In-Situ Piezoelectric Sensing for Concrete Strength Monitoring

Yen-Fang Su (11726888) 19 November 2021 (has links)
<p>Developing a reliable in-situ non-destructive testing method to determine the strength of in-place concrete is critical because a fast-paced construction schedule exposes concrete pavement and/or structures undergoing substantial loading conditions, even at their early ages. Conventional destructive testing methods, such as compressive and flexural tests, are very time-consuming, which may cause construction delays or cost overruns. Moreover, the curing conditions of the tested cylindrical samples and the in-place concrete pavement/structures are quite different, which may result in different strength values. An NDT method that could directly correlate the mechanical properties of cementitious materials with the sensing results, regardless of the curing conditions, mix design, and size effect is needed for the in-situ application.</p><p>The piezoelectric sensor-based electromechanical impedance (EMI) technique has shown promise in addressing this challenge as it has been used to both monitor properties and detect damages on the concrete structure. Due to the direct and inverse effects of piezoelectric, this material can act as a sensor, actuator, and transducer. This research serves as a comprehensive study to investigate the feasibility and efficiency of using piezoelectric sensor-based EMI to evaluate the strength of newly poured concrete. To understand the fundamentals of this method and enhance the durability of the sensor for in-situ monitoring, this work started with sensor fabrication. It has studied two types of polymer coating on the effect of the durability of the sensor to make it practical to be used in the field.</p><p>The mortar and concrete samples with various mix designs were prepared to ascertain whether the results of the proposed sensing technique were affected by the different mixtures. The EMI measurement and compressive strength testing methods (ASTM C39, ASTM C109) were conducted in the laboratory. The experimental results of mortar samples with different water-to-cement ratios (W/C) and two types of cement (I and III) showed that the correlation coefficient (R<sup>2</sup>) is higher than 0.93 for all mixes. In the concrete experiments, the correlation coefficient between the EMI sensing index and compressive strength of all mixes is higher than 0.90. The empirical estimation function was established through a concrete slab experiment. Moreover, several trial implementations on highway construction projects (I-70, I-74, and I-465) were conducted to monitor the real-time strength development of concrete. The data processing method and the reliable index of EMI sensing were developed to establish the regression model to correlate the sensing results with the compressive strength of concrete. It has been found that the EMI sensing method and its related statistical index can effectively reflect the compressive strength gain of in-place concrete at different ages.</p><p>To further investigate the in-situ compressive strength of concrete for large-scale structures, we conducted a series of large concrete slabs with the dimension of 8 feet × 12 feet × 8 inches in depth was conducted at outdoor experiments field to simulate real-world conditions. Different types of compressive strength samples, including cast-in-place (CIP) cylinder (4” × 6”) – (ASTM C873), field molded cylinder (4” × 8”) – (ASTM C39), and core drilled sample (4” × 8”) – (ASTM C42) were prepared to compare the compressive strength of concrete. The environmental conditions, such as ambient temperatures and relative humidity, were also recorded. The in-situ EMI monitoring of concrete strength was also conducted. The testing ages in this study were started from 6 hours after the concrete cast was put in place to investigate the early age results and continued up to 365 days (one year) later for long-term monitoring. The results indicate that the strength of the CIP sample is higher than the 4” x 8” molded cylinder , and that core drilled concrete is weaker than the two aforementioned. The EMI results obtained from the slab are close to those obtained from CIP due to similar curing conditions. The EMI results collected from 4 × 8-inch cylinder samples are lower than slab and CIP, which aligns with the mechanical testing results and indicates that EMI could capture the strength gain of concrete over time.</p><p>The consequent database collected from the large slab tests was used to build a prediction model for concrete strength. The Artificial Neuron Network (ANN) was investigated and experimented with to optimize the prediction of performances. Then, a sensitivity analysis was conducted to discuss and understand the critical parameters to predict the mechanical properties of concrete using the ML model. A framework using Generative Adversarial Network (GAN) based on algorithms was then proposed to overcome real data usage restrictions. Two types of GAN algorithms were selected for the data synthesis in the research: Tabular Generative Adversarial Networks (TGAN) and Conditional Tabular Generative Adversarial Networks (CTGAN). The testing results suggested that the CTGAN-NN model shows improved testing performances and higher computational efficiency than the TGAN model. In conclusion, the AI-guided concrete strength sensing and prediction approaches developed in this dissertation will be a steppingstone towards accomplishing the reliable and intelligent assessment of in-situ concrete structures.</p><br>
15

Development of Nanocomposites Based Sensors Using Molecular/Polymer/Nano-Additive Routes

Liu, Chang 30 May 2019 (has links)
No description available.
16

The Effect of Sensor Mass, Sensor Location, and Delamination Location of Different Composite Structures Under Dynamic Loading

Liu, Albert Darien 01 January 2013 (has links) (PDF)
This study investigated the effect of sensor mass, sensor location, and delamination location of different composite structures under dynamic loading. The study pertains to research of the use of accelerometers and dynamic response as a cost-effective and reliable method of structural health monitoring in composite structures. The composite structures in this research included carbon fiber plates, carbon fiber-foam sandwich panels, and carbon-fiber honeycomb sandwich panels. The composite structures were manufactured with the use of a Tetrahedron MTP-8 heat press. All work was conducted in the Cal Poly Aerospace Structures/Composites Laboratory. Initial delaminations were placed at several locations along the specimen, including the bending mode node line locations. The free vibration of the composite structure was forced through a harmonic horizontal vibration test using an Unholtz-Dickie shake system. A sinusoidal sweep input was considered for the test. The dynamic response of the composite test specimens were measured using piezoelectric accelerometers. Measurements were taken along horizontal and vertical locations on the surfaces of the composite structures. Square inch grids were marked on the surfaces to create a meshed grid system. Accelerometer measurements were taken at the center of the grids. The VIP Sensors 1011A piezoelectric accelerometer was used to measure vibration response. The measurements were then compared to response measurements taken from a PCB Piezotronics 353B04 single access accelerometer to determine the effects of sensor mass. Deviations in bending mode natural frequency and differences in mode shape amplitude became the criteria for evaluating the effect of sensor mass, sensor location, and delamination location. Changes in damping of the time response were also studied. The experimental results were compared to numerical models created using a finite element method. The experimental results and numerical values were shown to be in good agreement. The sensor mass greatly affected the accuracy and precision of vibration response measurements in the composites structures. The smaller weight and area of the VIP accelerometer helped to minimize the decrease in accuracy and precision due to sensor mass. The effect of sensor location was found to be coupled with the effect of sensor mass and the bending mode shape. The sensor location did not affect the vibration response measurements when the sensor mass was minimized. Off-center horizontal sensor placement showed the possibility of measuring vibration torsion modes. The effect of delamination changed the bending mode shape of the composite structure, which corresponded to a change in natural frequency. The greatest effect of the delamination was seen at the bending mode node lines, where the bending mode shape was most significantly affected. The effect of delamination was also dependent on the location of the delamination and the composite structure type. The results of this study provided considerations for future research of an active structural health monitoring system of composite structures using dynamic response measurements. The considerations included sensor mass reduction, sensor placement at constraints and bond areas and the presence of damping material.
17

NOVEL HIGH-RATE MANUFACTURING PROCESS FOR MULTIFUNCTIONAL THERMOPLASTIC COMPOSITES

Jessica Lavorata Anderson (17593293) 11 December 2023 (has links)
<p dir="ltr">In pursuit of enhanced fuel economy, the automotive industry is exploring the substitution of metal components with lightweight polymer composites. These components must withstand elevated static loading and crash performance, while ideally offering added functionalities and reduced weight. To tackle these challenges, this research presents an innovative manufacturing method aimed at reducing costs and cycle times associated with continuous fiber polymer composites. This method involves producing a linear thermoplastic composite rod known as M-TOW (Multi-tow), which can be molded into intricate shapes to serve as tailored structural reinforcement in hybrid-molded parts. The research encompasses the processing of M-TOW, with a focus on predicting consolidation using Darcy’s law, integrating functional components for thermal and electrical conductivity using overbraided metallic wire or sensing using optical fibers, and its application in real-world scenarios. These advancements showcase the versatility and potential of M-TOW in high-rate continuous fiber manufacturing, paving the way for multifunctional hybrid molded structures.<br><br></p>
18

Material Health Monitoring of SIC/SIC Laminated Ceramic Matrix Composites With Acoustic Emission And Electrical Resistance

Gordon, Neal A. January 2014 (has links)
No description available.
19

Real-time Structural Health Monitoring of Nonlinear Hysteretic Structures

Nayyerloo, Mostafa January 2011 (has links)
The great social and economic impact of earthquakes has made necessary the development of novel structural health monitoring (SHM) solutions for increasing the level of structural safety and assessment. SHM is the process of comparing the current state of a structure’s condition relative to a healthy baseline state to detect the existence, location, and degree of likely damage during or after a damaging input, such as an earthquake. Many SHM algorithms have been proposed in the literature. However, a large majority of these algorithms cannot be implemented in real time. Therefore, their results would not be available during or immediately after a major event for urgent post-event response and decision making. Further, these off-line techniques are not capable of providing the input information required for structural control systems for damage mitigation. The small number of real-time SHM (RT-SHM) methods proposed in the past, resolve these issues. However, these approaches have significant computational complexity and typically do not manage nonlinear cases directly associated with relevant damage metrics. Finally, many available SHM methods require full structural response measurement, including velocities and displacements, which are typically difficult to measure. All these issues make implementation of many existing SHM algorithms very difficult if not impossible. This thesis proposes simpler, more suitable algorithms utilising a nonlinear Bouc-Wen hysteretic baseline model for RT-SHM of a large class of nonlinear hysteretic structures. The RT-SHM algorithms are devised so that they can accommodate different levels of the availability of design data or measured structural responses, and therefore, are applicable to both existing and new structures. The second focus of the thesis is on developing a high-speed, high-resolution, seismic structural displacement measurement sensor to enable these methods and many other SHM approaches by using line-scan cameras as a low-cost and powerful means of measuring structural displacements at high sampling rates and high resolution. Overall, the results presented are thus significant steps towards developing smart, damage-free structures and providing more reliable information for post-event decision making.
20

Fabricação, análise computacional e experimental de juntas híbridas coladas monitoradas por compósitos inteligentes / Manufacturing, computational modeling and experimenting evaluation of hybrid bonded joints monitored through smart composites

Borges, Emanuel Nunes 05 July 2012 (has links)
O presente trabalho correlacionou diversas funções de respostas em frequência (FRF) de juntas do tipo simples, coladas e fabricadas em titânio-compósito (resina epóxi reforçada por fibra de carbono). As FRFs produzidas foram investigadas (experimental e numericamente) tanto para juntas intactas como para juntas com falha, estas provenientes, por exemplo, do uso em serviço ou então, com resultado do processamento inadequado de um reparo. Com base nessas análises buscou-se, portanto, subsidiar o desenvolvimento de um sistema de monitoramento estrutural a partir da avaliação de seu comportamento dinâmico, medido pelo uso de pastilhas piezelétricas integradas à estrutura. Para que o respectivo objetivo fosse alcançado. Num primeiro momento, a fim de compreender os fenômenos envolvidos, conduziu-se a atividade de revisão bibliográfica, que baseada na consulta dos trabalhos mais recentes publicados sobre a análise de juntas coladas empregando abordagem numérica, analítica e/ou experimental. Em seguida, foram desenvolvidos modelos computacionais preliminares com solução via Método dos Elementos Finitos (MEF), a fim de se obter as diretrizes mínimas para uma proposta de fabricação das juntas híbridas (metal-compósito). Tal estratégia permitiu reduzir efeitos indesejados, que pudessem comprometer os resultados experimentais. Em posse dos resultados computacionais fabricou-se amostras de juntas metal-compósito com e sem dano. Num primeiro momento, foram realizadas análises numéricas através do desenvolvimento de modelos computacionais (com solução via MEF) das juntas, metal-compósito, monitoradas por transdutores piezelétricos. Em seguida, as juntas híbridas foram submetidas a ensaios experimentais dinâmicos, empregando técnicas de monitoramento com auxílio de transdutores piezelétricos e acelerômetros. Por fim, avaliaram-se potencialidades e limitações dos modelos computacionais desenvolvidos, através de estudos de caso, comparando os resultados experimentais com os resultados numéricos. / The herein proposed research has correlates Frequency Response Functions (FRF) of several hybrid titanium-composite (epoxy resin reinforced with carbon fiber) single lap bonded joints. The FRFs were investigated (numerically and experimentally) for joints with and without failures which may arise as the result of in service events or bad maintenance practices. The result of the dynamic analyses provided by the FRFs has substantiated the proposal of a damage detection method using piezoelectric elements capable which are capable to detect minor alterations on the dynamic behavior of the joint. In order to reach the proposed objective, the first action towards the given objective was study the problem through a bibliographic revision of the research subject, for this purpose the most recent published works related to numerical, analytical and experimental analyses of bonded joints were thoroughly evaluated and segregated. Afterwards, models of the joints were proposed using Finite Element Models (FEM) to obtain a preliminary result of the joints behavior to eventually substantiate the manufacturing processes, reducing the amount of material, time and cost of the experiments. Based upon the results of the FEM the coupons were manufactured with and without damages, using the methods and techniques available on the maintenance field for restoration of composite elements. Before proceed to the comparison between the modeled and experimental results, additional models were proposed using previous work\'s results to get results from the piezoelectric monitored joints. Afterwards, all experimental tests were conducted using accelerometers and piezoelectric elements to provide the means through it the advantages and drawbacks of the proposed monitoring method could be checked, by comparison between the experimental and modeled results.

Page generated in 0.0889 seconds