• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 16
  • 16
  • 10
  • 2
  • 2
  • Tagged with
  • 159
  • 159
  • 70
  • 37
  • 25
  • 24
  • 22
  • 22
  • 22
  • 20
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

STRUCTURE-PROPERTY RELATIONSHIPS IN MULTILAYERED POLYMERIC SYSTEM AND OLEFINIC BLOCK COPOLYMERS

Khariwala, Devang January 2011 (has links)
No description available.
22

Processing, Structure and Properties in Layered Films and Clay Aerogel Composites

Wang, Yuxin 26 June 2012 (has links)
No description available.
23

Melt-Processable Polymeric Photonic Crystals and Their Applications as Nanolayered Laser Films

Song, Hyunmin 26 June 2012 (has links)
No description available.
24

CRYSTALLINE POLYMERS IN MULTILAYERED FILMS AND BLEND SYSTEMS

ZHANG, GUOJUN 02 September 2014 (has links)
No description available.
25

STRUCTURE, PROPERTIES AND APPLICATIONS OF LAYERED MATERIALS:MULTILAYERED FILMS AND AEROGEL COMPOSITES

Sun, Mingze 02 February 2018 (has links)
No description available.
26

Structure Property Relationships in Multilayered Thin Films: Mechanical and Gas Barrier Applications

Herbert, Matthew January 2015 (has links)
No description available.
27

Structure-Property Relationships of Flexible Polyurethane Foams

Aneja, Ashish 13 December 2002 (has links)
This study examined several features of flexible polyurethane foams from a structure-property perspective. A major part of this dissertation addresses the issue of connectivity of the urea phase and its influence on mechanical and viscoelastic properties of flexible polyurethane foams and their plaque counterparts. Lithium salts (LiCl and LiBr) were used as additives to systematically alter the phase separation behavior, and hence the connectivity of the urea phase at different scale lengths. Macro connectivity, or the association of the large scale urea rich aggregates typically observed in flexible polyurethane foams was assessed using SAXS, TEM, and AFM. These techniques showed that including a lithium salt in the foam formulation suppressed the formation of the urea aggregates and thus led to a loss in the macro level connectivity of the urea phase. WAXS and FTIR were used to demonstrate that addition of LiCl or LiBr systematically disrupted the local ordering of the hard segments within the microdomains, i.e., it led to a reduction of micro level connectivity or the regularity in segmental packing of the urea phase. Based on these observations, the interaction of the lithium salt was thought to predominantly occur with the urea hard segments, and this hypothesis was confirmed using quantum mechanical calculations. Another feature of this research investigated model trisegmented polyurethanes based on monofunctional polyols, or "monols", with water-extended toluene diisocyanate (TDI) based hard segments. The formulations of the monol materials were maintained similar to those of flexible polyurethane foams with the exceptions that the conventional polyol was substituted by an oligomeric monofunctional polyether of ca. 1000 g/mol molecular weight. Plaques formed from these model systems were shown to be solid materials even at their relatively low molecular weights of 3000 g/mol and less. AFM phase images, for the first time, revealed the ability of the hard segments to self-assemble and form lath-like percolated structures, resulting in solid plaques, even though the overall volume of the system was known to be dominated by the two terminal liquid-like polyether segments. In another aspect of this research, foams were investigated in which the ratios of the 2,4 and 2,6 TDI isomers were varied. The three commercially available TDI mixtures, i.e., 65:35 2,4/2,6 TDI, 80:20 2,4/2,6 TDI, and 100:0 2,4/2,6 TDI were used. These foams were shown to display marked differences in their cellular structure (SEM), urea aggregation behavior (TEM), and in the hydrogen bonding characteristics of the hard segments (FTIR). Finally, the nanoscale morphology of a series of 'model' segmented polyurethane elastomers, based on 1,4-butanediol extended piperazine based hard segments and poly(tetramethylene oxide) soft segments, was also investigated using AFM. The monodisperse hard segments of these 'model' polyurethanes contained precisely either one, two, three, or four repeating units. Not only did AFM image the microphase separated morphology of these polyurethanes, but it also revealed that the hard domains preferentially oriented with their long axis along the radial direction of the spherulites which they formed. / Ph. D.
28

Regioselective Synthesis of Cellulose Derivatives

Xu, Daiqiang 14 August 2012 (has links)
Cellulose is the most abundant polysaccharide on earth and it is relatively a simple homopolymer with three hydroxyl groups, differing only subtly in reactivity. The position of substitution has a powerful influence on physical properties of cellulose derivatives. To better understand the structure and property relationships of cellulose derivatives, it is critical to have all homopolymers related to important cellulose ethers and esters available. However, regiocontrol in cellulose chemistry is still a difficult, mostly unconquered frontier. In this dissertation, the main objective is to develop novel synthetic methods to synthesize regioselectively substituted cellulose derivatives including cellulose ethers and esters, and apply advanced characterization tools to understand structure and its influence on properties, which will give us deep insights into the composition of more random commercial derivatives, maximizing the content of advantageous monosaccharides. Several strategies to regioselectively synthesize cellulose derivatives are discussed in detail. The obtained regioselective cellulose derivatives were fully characterized analytically. Structure-property relationships of these regioselectively substituted cellulose derivatives were also studied. / Ph. D.
29

Effect of Backbone Structure on Membrane Properties for Poly(arylene ether) Random and Multiblock Copolymers

Rowlett, Jarrett Robert 07 October 2014 (has links)
Poly(arylene ether)s are a well-established class of thermoplastics that are known for their mechanical toughness, thermal stability, and fabrication into membranes. These materials can undergo a myriad of modifications including backbone structure variability, sulfonation, and crosslinking. In this dissertation, structure-property relationships are considered for poly(arylene ether)s with regard to membrane applications for proton exchange and gas separation membranes. All of the proton exchange membranes in this dissertation focus on a disulfonated poly(arylene ether sulfone) based hydrophilic structure to produce hydrophilic-hydrophobic multiblock copolymers. The hydrophobic segments were based upon poly(arylene ether benzonitrile) polymers and copolymers. The oligomers were synthesized and isolated separately, then reacted under mild conditions to form the alternating multiblock copolymers. Structure-property relationships were considered for two different proton exchange membrane applications. One multiblock copolymer system was for H2/air fuel cells, and the other for direct methanol fuel cells (DMFCs). The H2/air fuel cells operate under harsh conditions and varying levels of relative humidity, while the DMFCs operate in an aqueous environment with a methanol-water mixture (typically 0.5-1 M MeOH). Thus two different approaches were taken for the multiblock copolymers. All of the multiblock copolymers were cast into membranes and after annealing resulted in drastically reduced water uptake as compared to random and non-annealed systems. The membranes were characterized with regard to composition, mechanical properties, morphology, water uptake, proton conductivity, and molecular weight. Membranes were also sent to collaborators to elicit the fuel cell performance of the proton exchange membranes. In H2/air fuel cells the approach was to increase charge density by bisphenol choice in the hydrophilic phase. This was performed by switching to a lower molecular weight monomer, hydroquinone, and a monosulfonated hydroquinone. This produced higher charge density in the hydrophilic phase, and the corresponding multiblock copolymer. With increased hydrophilicity the multiblock copolymers showed increased phase separation, proton conductivity, and better performance under relative humidity testing. In the second system for DMFCs, the primary goal was to reduce methanol permeability by bisphenol selection in the hydrophobic phase. This was done with by replacing fifty mole percent of the fluorinated monomer with a series of increasing hydrophobicity bisphenols. Addition of benzylic methyl groups on the bisphenols, was the method undertaken to increase the hydrophobicity. The combination of reduced fluorine content along with the addition of methyl groups resulted in multiblock copolymers with extremely low water uptake and methanol permeability. This allowed for a PEM with better performance than Nafion® in 1M MeOH in DMFC testing. The gas separation membranes presented in this dissertation are based upon poly(arylene ether ketone)s. Two systems were presented: one with a polymer directly synthesized with a bisphenol containing benzylic methyl groups and 4,4'-difluorobenzophenone, and the other a difunctional poly(phenylene oxide) oligomer polymerized with 4,4'-difluorobenzophenone. These systems were crosslinked via UV light through excitation of the ketone group to the triplet state and then hydrogen abstraction from the benzylic methyl. Confirmation of crosslinking was performed via differential scanning calorimetry and infrared spectroscopy. Changes in the glass transitions between crosslinked and non-crosslinked materials were characterized with respect to the concentration of ketones to elicit the effects of crosslink density on the polymers and copolymers. Gas transport properties showed a strong dependence on the ketone percentage as the selectivity was much higher for the homopolymer, while the permeability was higher for the PPO copolymer in the CO2/CH4 and O2/N2 gas pairs. / Ph. D.
30

Influence of Molecular Orientation and Surface Coverage of w-Functionalized Mercaptans on Surface Acidity

Taylor, Charles Doulgas 02 December 2000 (has links)
The compounds 12-phenoxy-dodecane-1-thiol, 4-dodecyloxymercaptophenol and 3-dodecyloxymercaptophenol have been synthesized using a novel synthesis to investigate the effect that the orientation of the functional group has on surface acidity. 3-dodeycloxymercaptophenol and 4-dodecyloxymercaptophenol differ in that the hydroxyl group is substituted on different carbons of the benzene ring. The difference in substitution patterns should present the hydroxyl group in different orientations in the interface between a self-assembled monolayer of the compound and aqueous solutions buffered over a pH range of 3-13. By preparing self-assembled monolayers of these molecules on gold substrates, the ability of the hydroxyl group to donate its proton was shown to depend on the hydroxyl group substitution pattern on the benzene ring through contact angle titration experiments. 3-dodecyloxymercaptophenol clearly showed plateaus at low and high pH with a broad transition between the two plateaus. 4-dodecyloxymercaptophenol showed a clear plateau at low pH but not at high pH, although a transition was observed. Using infrared spectroscopy, it was further shown that the long molecular axis of the benzene ring in 3-dodecyloxymercaptophenol was tilted from the surface normal by 55°. The short molecular axis of the ring was twisted out of the plane of the surface by 28° for self-assembled monolayers of this molecule on gold substrates. In contrast, the tilt angle of 4-dodecyloxymercatophenol was measured to be 46° and was twisted out of the surface plane by 36°. It was also found from cyclic voltammetry experiments in 0.5 M KOH, that the ionized monolayers of 4-dodecyloxymercaptophenol were 2.3 kJ/mol less stable than monolayers of 3-dodecyloxymercaptophenols. This finding suggests that hydrogen bonding and other intermolecular interactions in 4-dodecyloxymercaptophenol are greater than in 3-dodecyloxymercaptophenol. / Ph. D.

Page generated in 0.4433 seconds