Spelling suggestions: "subject:"studenti""
1 |
Survey Design and Analysis for Energy StatisticsSagatelov, Rouben January 2008 (has links)
No description available.
|
2 |
The 3σ-rule for outlier detection from the viewpoint of geodetic adjustmentLehmann, Rüdiger 21 January 2015 (has links) (PDF)
The so-called 3σ-rule is a simple and widely used heuristic for outlier detection. This term is a generic term of some statistical hypothesis tests whose test statistics are known as normalized or studentized residuals. The conditions, under which this rule is statistically substantiated, were analyzed, and the extent it applies to geodetic least-squares adjustment was investigated. Then, the efficiency or non-efficiency of this method was analyzed and demonstrated on the example of repeated observations. / Die sogenannte 3σ-Regel ist eine einfache und weit verbreitete Heuristik für die Ausreißererkennung. Sie ist ein Oberbegriff für einige statistische Hypothesentests, deren Teststatistiken als normierte oder studentisierte Verbesserungen bezeichnet werden. Die Bedingungen, unter denen diese Regel statistisch begründet ist, werden analysiert. Es wird untersucht, inwieweit diese Regel auf geodätische Ausgleichungsprobleme anwendbar ist. Die Effizienz oder Nichteffizienz dieser Methode wird analysiert und demonstriert am Beispiel von Wiederholungsmessungen.
|
3 |
The 3σ-rule for outlier detection from the viewpoint of geodetic adjustmentLehmann, Rüdiger January 2013 (has links)
The so-called 3σ-rule is a simple and widely used heuristic for outlier detection. This term is a generic term of some statistical hypothesis tests whose test statistics are known as normalized or studentized residuals. The conditions, under which this rule is statistically substantiated, were analyzed, and the extent it applies to geodetic least-squares adjustment was investigated. Then, the efficiency or non-efficiency of this method was analyzed and demonstrated on the example of repeated observations. / Die sogenannte 3σ-Regel ist eine einfache und weit verbreitete Heuristik für die Ausreißererkennung. Sie ist ein Oberbegriff für einige statistische Hypothesentests, deren Teststatistiken als normierte oder studentisierte Verbesserungen bezeichnet werden. Die Bedingungen, unter denen diese Regel statistisch begründet ist, werden analysiert. Es wird untersucht, inwieweit diese Regel auf geodätische Ausgleichungsprobleme anwendbar ist. Die Effizienz oder Nichteffizienz dieser Methode wird analysiert und demonstriert am Beispiel von Wiederholungsmessungen.
|
4 |
Das nichtparametrische Behrens-Fisher-Problem: ein studentisierter Permutationstest und robuste Konfidenzintervalle für den Shift-Effekt / The non-parametric Behrens-Fisher Problem: A Studentized Permutation Test and Robust Confidence Intervals for the Shift EffectNeubert, Karin 07 July 2006 (has links)
No description available.
|
5 |
Transformation model selection by multiple hypotheses testingLehmann, Rüdiger 17 October 2016 (has links) (PDF)
Transformations between different geodetic reference frames are often performed such that first the transformation parameters are determined from control points. If in the first place we do not know which of the numerous transformation models is appropriate then we can set up a multiple hypotheses test. The paper extends the common method of testing transformation parameters for significance, to the case that also constraints for such parameters are tested. This provides more flexibility when setting up such a test. One can formulate a general model with a maximum number of transformation parameters and specialize it by adding constraints to those parameters, which need to be tested. The proper test statistic in a multiple test is shown to be either the extreme normalized or the extreme studentized Lagrange multiplier. They are shown to perform superior to the more intuitive test statistics derived from misclosures. It is shown how model selection by multiple hypotheses testing relates to the use of information criteria like AICc and Mallows’ Cp, which are based on an information theoretic approach. Nevertheless, whenever comparable, the results of an exemplary computation almost coincide.
|
6 |
Transformation model selection by multiple hypotheses testingLehmann, Rüdiger January 2014 (has links)
Transformations between different geodetic reference frames are often performed such that first the transformation parameters are determined from control points. If in the first place we do not know which of the numerous transformation models is appropriate then we can set up a multiple hypotheses test. The paper extends the common method of testing transformation parameters for significance, to the case that also constraints for such parameters are tested. This provides more flexibility when setting up such a test. One can formulate a general model with a maximum number of transformation parameters and specialize it by adding constraints to those parameters, which need to be tested. The proper test statistic in a multiple test is shown to be either the extreme normalized or the extreme studentized Lagrange multiplier. They are shown to perform superior to the more intuitive test statistics derived from misclosures. It is shown how model selection by multiple hypotheses testing relates to the use of information criteria like AICc and Mallows’ Cp, which are based on an information theoretic approach. Nevertheless, whenever comparable, the results of an exemplary computation almost coincide.
|
Page generated in 0.0716 seconds