Spelling suggestions: "subject:"stuck""
21 |
Ambarzumian¡¦s Theorem for the Sturm-Liouville Operator on GraphsWu, Mao-ling 06 July 2007 (has links)
The Ambarzumyan Theorem states that for the
classical Sturm-Liouville problem on $[0,1]$, if the set of Neumann
eigenvalue $sigma_N={(npi)^2: nin { f N}cup { 0}}$, then
the potential function $q=0$. In this thesis, we study the analogues
of Ambarzumyan Theorem for the Sturm-Liouville operators on
star-shaped graphs with 3 edges of different lengths. We first
solve the direct problem: to find out the set of eigenvalues when
$q=0$. Then we use the theory of transformation operators and
Raleigh-Ritz inequality to prove the inverse problem. Following
Pivovarchik's work on star-shaped graphs of uniform lengths, we
analyze the Kirchoff condition in detail to prove our theorems. In
particular, we study the cases when the lengths of the 3 edges
satisfy $a_1=a_2=frac{1}{2}a_3$ or
$a_1=frac{1}{2}a_2=frac{1}{3}a_3$. Furthermore, we work on Neumann
boundary conditions as well as Dirichlet boundary conditions. In
the latter case, some assumptions about $q$ have to be made.
|
22 |
On Some New Inverse nodal problemsCheng, Yan-Hsiou 17 July 2000 (has links)
In this thesis, we study two new inverse nodal problems
introduced by Yang, Shen and Shieh respectively.
Consider the classical Sturm-Liouville problem: $$ left{
egin{array}{c}
-phi'+q(x)phi=la phi
phi(0)cosalpha+phi'(0)sinalpha=0
phi(1)coseta+phi'(1)sineta=0
end{array}
ight. ,
$$ where $qin L^1(0,1)$ and $al,ein [0,pi)$. The inverse
nodal problem involves the determination of the parameters
$(q,al,e)$ in the problem by the knowledge of the nodal points
in $(0,1)$. In 1999, X.F. Yang got a uniqueness result which only
requires the knowledge of a certain subset of the nodal set. In
short, he proved that the set of all nodal points just in the
interval $(0,b) (frac{1}{2}<bleq 1)$ is sufficient to determine
$(q,al,e)$ uniquely.
In this thesis, we show that a twin and dense subset of all nodal
points in the interval $(0,b)$ is enough to determine
$(q,al,e)$ uniquely. We improve Yang's theorem by weakening
its conditions, and simplifying the proof.
In the second part of this thesis, we will discuss an inverse
nodal problem for the vectorial Sturm-Liouville problem: $$
left{egin{array}{c} -{f y}'(x)+P(x){f y}(x) = la {f y}(x)
A_{1}{f y}(0)+A_{2}{f y}'(0)={f 0} B_{1}{f
y}(1)+B_{2}{f y}'(1)={f 0}
end{array}
ight. .
$$
Let ${f y}(x)$ be a continuous $d$-dimensional vector-valued
function defined on $[0,1]$. A point $x_{0}in [0,1]$ is called a
nodal point of ${f y}(x)$ if ${f y}(x_{0})=0$. ${f y}(x)$
is said to be of type (CZ) if all the zeros of its components are
nodal points. $P(x)$ is called simultaneously diagonalizable if
there is a constant matrix $S$ and a diagonal matrix-valued
function $U(x)$ such that $P(x)=S^{-1}U(x)S.$
If $P(x)$ is simultaneously diagonalizable, then it is easy to
show that there are infinitely many eigenfunctions which are of
type (CZ). In a recent paper, C.L. Shen and C.T. Shieh (cite{SS})
proved the converse when $d=2$: If there are infinitely many
Dirichlet eigenfunctions which are of type (CZ), then $P(x)$ is
simultaneously diagonalizable.
We simplify their work and then extend it to some general
boundary conditions.
|
23 |
Differentialgleichungen 2. Ordnung im Banachraum : Existenz, Eindeutigkeit u. Extremallösungen unter Sturm-Liouville u. period. Randbedingungen.Harten, Gerd-Friedrich von. January 1979 (has links)
Gesamthochsch., Diss.--Paderborn, 1979.
|
24 |
Lessing and the "Sturm und Drang" : a reappraisal revisited /Ottewell, Karen, January 2002 (has links)
Texte remanié de: Doct. th.--Cambridge--University, 2000. / Bibliogr. p. 247-280.
|
25 |
Goethes Weg nach Weimar : zur Kontinuität und Diskontinuität des Sturm und Drang in den Jahren 1770-1790 /Sturm, Marcel, January 1900 (has links)
Texte remanié de: Dissertation--Siegen--Universität, 2006. / Bibliogr. p. 219-244.
|
26 |
Die literatursatire der sturm- und drang-bewegungHüchting, Heide. January 1941 (has links)
Thesis--Münster. / Neue deutsche forschungen, hrsg. von Hans R.G. Günther und Erich Rothacker. Bd. 311. Vita. "Literaturverzeichnis": p. [104]-108.
|
27 |
Beiträge zur Ethik der Sturm- und Drang- DichtungGarbe, Ulrike. January 1916 (has links)
Inaug.-Diss.--Leipzig. / Vita. Bibliography: p. 122-123.
|
28 |
Extensions of sturm-liouville theory : nodal sets in both ordinary and partial differential equationsYang, Xue-Feng 08 1900 (has links)
No description available.
|
29 |
Some new classes of orthogonal polynomials and special functions a symmetric generalization of Sturm-Liouville problems and its consequences /Masjed-Jamei, Mohammad. Unknown Date (has links)
University, Diss., 2006--Kassel.
|
30 |
Das Raumproblem im Drama des Sturm und DrangSchäfer, Horst. January 1938 (has links)
Issued also as diss., Munich. / Includes bibliographical references (p. 106-109).
|
Page generated in 0.0283 seconds