Spelling suggestions: "subject:"supercooled"" "subject:"cooled""
11 |
Effects of Carbon Nanotube Coating on Bubble Departure Diameter and Frequency in Pool Boiling on a Flat, Horizontal HeaterGlenn, Stephen T. 2009 August 1900 (has links)
The effects of a carbon nanotube (CNT) coating on bubble departure diameter and frequency in pool boiling experiments was investigated and compared to those on a bare silicon wafer. The pool boiling experiments were performed at liquid subcooling of 10 degrees Celsius and 20 degrees Celsius using PF-5060 as the test fluid and at atmospheric pressure. High-speed digital image acquisition techniques were used to perform hydrodynamic measurements. Boiling curves obtained from the experiments showed that the CNT coating enhanced critical heat flux (CHF) by 63% at 10 degrees Celsius subcooling. The CHF condition was not measured for the CNT sample at 20 degrees Celsius subcooling. Boiling incipience superheat for the CNT-coated surface is shown to be much lower than predicted by Hsu's hypothesis. It is proposed that bubble nucleation occurs within irregularities at the surface of the CNT coating. The irregularities could provide larger cavities than are available between individual nanotubes of the CNT coating.
Measurements from high-speed imaging showed that the average bubble departing from the CNT coating in the nucleate boiling regime (excluding the much larger bubbles observed near CHF) was about 75% smaller (0.26 mm versus 1.01 mm)and had a departure frequency that was about 70% higher (50.46 Hz versus 30.10 Hz). The reduction in departure diameter is explained as a change in the configuration of the contact line, although further study is required. The increase in frequency is a consequence of the smaller bubbles, which require less time to grow. It is suggested that nucleation site density for the CNT coating must drastically increase to compensate for the smaller departure diameters if the rate of vapor creation is similar to or greater than that of a bare silicon surface.
|
12 |
Bubble Formation in a Horizontal Channel at Subcooled Flow ConditionShaban Nejad, Saman 27 November 2013 (has links)
Bubble nucleation at subcooled flow boiling condition in a horizontal annular channel with a square cross section by the use of high-speed camera is investigated. The channel represents a scaled-down version of a single rod of CANDU reactor core. The experiments were performed by the use of water at pressures between 1-3 atm, constant heat flux of 0.124 MW/m2, liquid bulk subcooling of 32-1oC and mean flow velocities of 0.3-0.4 m/s. Bubble lift-off diameters were obtained from direct high speed videography. The developed model for the bubble lift-off diameter was obtained by analyzing the forces acting on a bubble. Furthermore, a model for the bubble growth rate constant was suggested. The proposed model was then compared to experimental data and it has shown a good agreement with the experimental data. Additionally, the effects of liquid bulk subcooling, liquid pressure and mean flow velocity on bubble lift-off diameter were investigated.
|
13 |
Bubble Formation in a Horizontal Channel at Subcooled Flow ConditionShaban Nejad, Saman 27 November 2013 (has links)
Bubble nucleation at subcooled flow boiling condition in a horizontal annular channel with a square cross section by the use of high-speed camera is investigated. The channel represents a scaled-down version of a single rod of CANDU reactor core. The experiments were performed by the use of water at pressures between 1-3 atm, constant heat flux of 0.124 MW/m2, liquid bulk subcooling of 32-1oC and mean flow velocities of 0.3-0.4 m/s. Bubble lift-off diameters were obtained from direct high speed videography. The developed model for the bubble lift-off diameter was obtained by analyzing the forces acting on a bubble. Furthermore, a model for the bubble growth rate constant was suggested. The proposed model was then compared to experimental data and it has shown a good agreement with the experimental data. Additionally, the effects of liquid bulk subcooling, liquid pressure and mean flow velocity on bubble lift-off diameter were investigated.
|
14 |
Development and assessment of a one-dimensional CFD solver for boiling flows in bubbly regimesGómez-Zarzuela Quel, Consuelo 21 July 2020 (has links)
[EN] The present PhD thesis aims at the development of a one-dimensional solver
capable of solving single- and two-phase flow fluid systems. The novelty of this
project lies in the use of an open source CFD platform, called OpenFOAM, as a
development framework for the new tool.
For the new solver development, the conservation equations based on Navier-
Stokes (three-dimensional system) have been analyzed and reduced to one dimension.
For the two-phase simulations, the Two Fluid Model method was used
as base. In addition, a series of empirical models have been selected as closing
equations of the system.
The final solver includes a series of requirements that reinforce their capabilities.
Among them, the use of a second mesh that represents the solid and takes into
account the heat transmitted to the fluid by conduction through a solid, stands
out. On the other hand, the possible transfer of mass between phases in twophase
fluids has been taken into account. Similarly, a subcooled boiling model
has been implemented which takes into account the possible generation of vapor
near the wall while the bulk is kept below saturation temperature.
Finally, this paper presents the verification and validation of the solver. The verification
has been carried out mainly with the system code TRACE, whose validation
has been demonstrated in numerous works and its use is very extended
in the scientific community. For the validation, we have the results of two experimental
cases that allow us to demonstrate the physical validity of the new
application developed.
The use of this platform allows for a much more direct coupling between one- and
three-dimensional domains, obtaining a better optimization of the calculation. / [ES] El presente trabajo de doctorado tiene por objetivo el desarrollo de un solver
unidimensional capaz de resolver sistemas de fluidos monofásicos y bifásicos.
La novedad de este proyecto reside en el uso de una plataforma CFD de código
abierto, llamada OpenFOAM, como marco para el desarrollo de la nueva herramienta.
Para el desarrollo del nuevo solver, se han analizado las ecuaciones de conservación
basadas en Navier-Stokes (tridimensionales) y se han reducido a una dimensión.
Para la parte bifásica del solver, se utiliza el método Two Fluid Model.
Además, se han incluido todos los modelos empíricos necesarios como ecuaciones
de cierre del sistema.
El solver final incluye una serie de requerimientos que refuerzan sus capacidades.
Entre ellas, destacan, por un lado, el uso de una segunda malla que represente el
sólido y tenga en cuenta el calor transmitido al fluido por conducción a través de
un sólido. Por otro lado, se ha tenido en cuenta la posible transferencia de masa
entre fases en fluidos bifásicos. Igualmente, se ha implementado un modelo de
ebullición subenfriada que tiene en cuenta la posible generación de vapor cerca
de la pared mientras el centro del fluido se mantiene por debajo de la temperatura
de saturación.
Finalmente, este trabajo presenta la verificación y validación del solver. La verificación
se ha realizado principalmente con el código de sistema TRACE. Para
la validación, se cuenta con los resultados de dos casos experimentales que permiten
demostrar la validez física de la nueva aplicación desarrollada.
La implementación del nuevo solver en esta plataforma abierta permite un futuro
acoplamiento mucho más directo entre mallas unidimensionales y tridimensionales,
obteniendo una mayor optimización del cálculo. / [CA] El present treball de doctorat té per objectiu el desenvolupament d'un nou solver unidimensional capaç de solucionar sistemes amb fluids monofàsics i bifàsics. La novetat d'aquest projecte resideix en l'ús d'una plataforma CFD de codi obert, anomenada OpenFOAM com a marc de desenvolupament de la nova eina. Per al desenvolupament del nou solver, s'han analitzat les equacions de conservació basades en Navier-Stokes (tridimensionals) i s'han reduït a una dimensió. Per a la part bifàsica del solver s'utilitza el mètode Two Fluid Model. A més, s'han inclòs tots els models empírics necessaris com a equacions de tancament del sistema. El solver final inclou una sèrie de requeriments que reforcen les seues capacitats. Entre elles, destaquen, d'una banda, l'ús d'una segona malla que represente el sòlid i es tinga en compte la calor transmesa al fluid per conducció a través d'un sòlid. D'altra banda, s'ha tingut en compte la possible transferència de massa entre fases en fluids bifàsics. Igualment, s'ha implementat un model d'ebullició subrefredada que té en compte la possible generació de vapor prop de la paret mentre el centre del fluid es manté per davall de la temperatura de saturació. Finalment, aquest treball presenta la verificació i validació del solver. La verificació s'ha realitzat principalment amb el codi de sistema TRACE, la validació del qual s'ha demostrat en nombrosos treballs i el seu ús està molt estés en la comunitat científica. Per a la validació, es compta amb els resultats de dos casos experimentals que permeten demostrar la validesa física de la nova aplicació desenvolupada. L'ús d'esta plataforma permiteix un futur acoblament més directe, entre elements unidimensionals i tridimensionals, obtenint una major optimització del càlcul. / Gómez-Zarzuela Quel, C. (2020). Development and assessment of a one-dimensional CFD solver for boiling flows in bubbly regimes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/148368
|
15 |
Experimental investigation of effects of coolant concentration on subcooled boiling and crud deposition on reactor cladding at high pressures and high temperaturesParavastu Pattarabhiran, Vijaya Raghava January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Donald L. Fenton / Increase in demand for energy necessitates nuclear power units to increase their peak power limits. This increase implies significant changes in the design of the nuclear power unit core in order to provide better economy and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Water Reactors (PWR) is the so called ‘Axial Offset Anomaly (AOA)’. An Axial Offset Anomaly (AOA) is the unexpected change in the core axial power distribution during the operation of a PWR from the predicted distribution. This problem is thought to be occurring because of precipitation and deposition of lithiated compounds such as lithium metaborate (LiBO[subscript]2) on the fuel rod. Due to its intrinsic property, the deposited boron absorbs neutrons thereby affecting the total power distribution in the reactor. AOA is thought to occur when there is sufficient build up of crud deposits on the cladding during subcooled nucleate boiling.
Predicting AOA is difficult because there is little information regarding the heat and mass transfer during subcooled nucleate boiling. This thesis describes the experimental investigation that was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of LiBO[subscript]2 and boric acid (H[subscript]2BO[subscript]3) solutions along with deionized water. The experimental data collected includes the effect of coolant concentration, degree of subcooling, system pressure and heat flux on pool boiling heat transfer coefficients. An analysis of deposits formed on the fuel rod during subcooled nucleate boiling is also included in the thesis.
The experimental results reveal that the pool boiling heat transfer coefficient is degraded by the presence of boric acid and lithium metaborate in water. At concentration of 5000 ppm in water, the boric acid solution reduced the heat transfer coefficient by 23% and lithium metaborate solution reduced the heat transfer coefficient by 26%.
|
16 |
Experimentelle Untersuchungen zum Blasensieden bei unterkühlten StrömungenSchneider, Clemens 08 December 2015 (has links) (PDF)
Die vorliegende Dissertationsschrift beinhaltet die Ergebnisse der Untersuchung von loka-len und globalen Prozessen der Wärmeübertragung beim unterkühlten Strömungssieden. Sie ist an der Schnittstelle zwischen Reaktorsicherheitsforschung und der experimentellen Thermofluiddynamik für Phasenübergänge einzuordnen.
In technischen Anwendungen zur effizienten Übertragung großer Wärmemengen spielt der Prozess des Siedens eine wichtige Rolle. Dieser Vorgang bewirkt einen starken Anstieg des Wärmetransportes von der beizten Wand an das Fluid bei vergleichsweise geringem Anstieg der Wandtemperatur. Der maximal übertragbare Wärmestrom beim Sieden wird begrenzt durch die sogenannte kritische Wärmestromdichte, deren Überschreitung zum thermomechanischen Versagen der beheizten Komponente führen kann.
Aufgrund der Komplexität dieser Prozesse ist es trotz intensiver Arbeiten in den letzten Jahrzehnten noch nicht gelungen, diese Vorgänge detailliert zu modellieren. Eine Weiter-entwicklung der Modelle zur realistischen Beschreibung des unterkühlten Strömungssie-dens erfordert neuartige Untersuchungen, welche eine genaue Klassifizierung der partiellen Wärmeübergänge des Blasensiedens ermöglichen.
Die Analyse partieller Wärmetransportgrößen beim unterkühlten Strömungssieden sowie der Einfluss variierender thermohydraulischer Randbedingungen ist Schwerpunkt dieser Arbeit. In der entwickelten Versuchsanlage erfolgt die Erfassung der Siedevorgänge bei Strömungsgeschwindigkeiten von 0,1 – 2 m/s und Eintrittstemperaturen von 60 - 98 °C.
Mit Hilfe empfindlicher Temperaturmessungen in einem elektrisch beheizten Kapillarrohr innerhalb des Strömungskanals werden die globalen Vorgänge beim Übergang von Kon-vektion zum Sieden erfasst. Durch eine modellbasierte Bestimmung der Oberflächentem-peratur lassen sich Phänomene nachweisen, welche bisher weitestgehend unbeachtet ge-blieben sind. Die transparente Versuchsstrecke ermöglicht eine Erfassung der lokalen Sie-devorgänge mit optisch und zeitlich hochauflösenden Messverfahren. Durch die Entwick-lung neuer Algorithmen der digitalen Bildverarbeitung wurde eine umfangreiche, kenngrö-ßenorientierte Auswertung der in großem Umfang entstandenen Datenmengen realisiert.
Der Einsatz transparenter und elektrisch leitfähiger Beschichtungen ermöglicht die mikro-skopische Erfassung des Blasenwachstums in weiten thermohydraulischen Parameterberei-chen. Mit erweiterten Bildverarbeitungsalgorithmen erfolgt die detaillierte und dynamische Bewertung des Blasenwachstumsverhaltens. Die statistische Auswertung der Verläufe er-möglicht die Ableitung eines Blasenwachstumsmodells für unterkühltes Strömungssieden.
In einer weiteren Versuchsanordnung werden die lokalen Wärmetransportvorgänge bei der Ablösung quasistatisch gewachsener Blasen mit Hilfe der Infrarot-Thermographie be-stimmt. Dadurch können erstmalig die aus der lokalen Abkühlung der beheizten Oberfläche durch Blasenablösung resultierenden Wärmeströme unter Vernachlässigung der Bla-senbildung experimentell quantifiziert werden. Weiterhin können die bisher theoretisch beschriebenen Driftströmungen beim Aufstieg der Blase experimentell nachgewiesen wer-den. Die ermittelten Größen und Zusammenhänge tragen zur Weiterentwicklung und zum Abbau von Unsicherheiten bei der Modellierung von Wärmetransportvorgängen beim unterkühlten Strömungssieden bei.
|
17 |
Development of a Multi-field Two-fluid Approach for Simulation of Boiling FlowsSetoodeh, Hamed 12 May 2023 (has links)
Safe and reliable operation of nuclear power plants is the basic requirement for the utilization of nuclear energy since accidents can release radioactivity and with that cause irreversible damage to human beings. Reliability and safety of nuclear reactors are highly dependent on the stability of thermal hydraulic processes occurring in them. Nucleate boiling occurs in Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs) as well as in their passive safety systems during an accident. Passive safety systems are solely driven by thermal gradients and gravitational force removing residual heat from the reactor core independent of any external power supply in the case of accidents. Instability of flow boiling in these passive circuits can cause flow oscillations. These oscillations may induce insufficient local cooling and mechanical loads, which threatens the reactors’ safety. Analysis of boiling two-phase flow and associated heat and mass transfer requires an accurate modeling of flow regime transitions and prediction of boiling parameters such as void fraction, steam bubble sizes, heat transfer coefficient, etc. Flow boiling has been intensively investigated through experiments, one-dimensional codes, and Computational Fluid Dynamics (CFD) methods. Costly hardware and no accessibility to all locations in complex geometries restrict the experimental investigation of flow boiling. Since one-dimensional codes such as ATHLET, RELAP and TRACE are ”lumped parameter” codes, they are unable to simulate complex flow boiling transition patterns.
In the last decades, with the development of supercomputers, CFD has been considered as a useful tool to model heat and mass transfer occurring in flow boiling regimes. In many industrial applications and system designs, CFD codes and particularly the Eulerian-Eulerian (E-E) two-fluid model are quickly replacing the experimental and analytical methods. However, the application of this approach for flow boiling modelling poses a challenge for the development of bubble dynamics and wall boiling models to predict heat and mass transfer at the heating wall as well as phase-change mechanism. Many empirical and mechanistic models have been proposed for bubble dynamics modelling. Nevertheless, the validity of these models for only a narrow range of operating conditions and their uncertainties limit their applicability and consequently presently necessitate us to calibrate them for a given boundary condition via calibration factors. For that reason, the first aim of this thesis is the development of a bubble dynamics model for subcooled boiling flow, which needs no calibration factor to predict the bubble growth and detachment.
This mechanistic model is formulated based on the force balance approach, physics of a single nucleated bubble and several well-developed models to cover the whole bubble life cycle including formation, growth and departure. This model considers dynamic inclination angle and contact angles between the bubble and the heating wall as well as the contribution of microlayer evaporation, thermal diffusion and condensation around the bubble cap. Validation against four experimental flow boiling data sets was conducted with no case-dependent recalibration and yielded good agreement. The second goal is the implementation of the developed bubble dynamics model in the E-E two-fluid model as a sub-model to improve the accuracy of boiling flow simulation and reduce the case dependency. This implementation requires an extension of the nucleation site activation and wall heat-partitioning models. The bubble dynamics and heat-partitioning models were coupled with the Population Balance Model (PBM) to handle bubble interactions and predict the Bubble Size Distribution (BSD). In addition, the contribution of bubble sliding to wall heat transfer, which has been rarely considered in other modelling approaches, is considered. Validation for model implementation in the E-E two-fluid model was made with ten experimental cases including R12 and R134a flow boiling in a pipe and an annulus. These test cases cover a wide range of operating parameters such as wall heat flux, fluid velocity, subcooling temperature and pressure. The validated parameters were the bubble diameter, void fraction, bubble velocity, Interfacial Area Density (IAD), bubble passing frequency, liquid and wall temperatures.
Two-phase flow morphologies for an upward flow in a vertical heating pipe may change from bubbly to slug, plug, and annular flow. Since these flow patterns have a great impact on the heat and mass transfer rates, an accurate prediction of them is critical. The aim of this thesis is the implementation of the developed bubble dynamics and heat-partitioning models in the recently developed GENeralized TwO-Phase flow (GENTOP) framework for the modelling of these flow patterns transition as well. An adopted wall heat-partitioning model for high void fractions is presented and for a generic test case, flow boiling regimes of water in a vertical heating pipe were modelled using ANSYS CFX 18.2. Moreover, the impacts of wall superheat, subcooling temperature and fluid velocity on the flow boiling transition patterns and the effects of these patterns on the wall heat transfer coefficient were evaluated.:Nomenclature xi
1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 State-of-the-art in modelling of subcooled flow boiling 11
2.1 Physics of boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Bubble growth modelling . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 CFD simulation of boiling flows . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 The Eulerian-Eulerian two-fluid model . . . . . . . . . . . . . 21
2.3.2 The Population Balance Model (PBM) . . . . . . . . . . . . . 22
2.3.3 Governing equations of the two-fluid model . . . . . . . . . . 25
2.3.4 Closure models for adiabatic bubbly flow . . . . . . . . . . . . 28
2.3.5 Phase transfer models . . . . . . . . . . . . . . . . . . . . . . 37
2.3.6 The Rensselaer Polytechnic Institute (RPI) wall boiling model 37
2.4 Flow boiling transition patterns in vertical pipes . . . . . . . . . . . . 42
2.5 The GENeralized TwO-Phase flow (GENTOP) concept . . . . . . . . . 45
2.5.1 Treatment of the continuous gas . . . . . . . . . . . . . . . . 46
2.5.2 The Algebraic Interfacial Area Density (AIAD) model . . . . . 46
2.6 Interfacial transfers of continuous gas . . . . . . . . . . . . . . . . . 47
2.6.1 Drag and lift forces . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6.2 Cluster and surface tension forces . . . . . . . . . . . . . . . . 49
2.6.3 Complete coalescence . . . . . . . . . . . . . . . . . . . . . . 50
2.6.4 Entrainment modelling . . . . . . . . . . . . . . . . . . . . . . 51
2.6.5 Turbulence modelling . . . . . . . . . . . . . . . . . . . . . . 51
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 An improved bubble dynamics model for flow boiling 55
3.1 Modelling of the bubble formation . . . . . . . . . . . . . . . . . . . 55
3.1.1 Bubble growth rate . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Force balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ix
3.1.3 Detachment criteria . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.4 Wall heat flux model . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.5 Heat transfer in the heating wall . . . . . . . . . . . . . . . . 70
3.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.1 Discretization dependency study . . . . . . . . . . . . . . . . 72
3.2.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 An improved wall heat-partitioning model 85
4.1 The cavity group activation model . . . . . . . . . . . . . . . . . . . . 85
4.1.1 Bubble sliding length and influence area . . . . . . . . . . . . 88
4.1.2 Model implementation in the Eulerian-Eulerian framework . . 89
4.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.1 DEBORA experiments . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 Subcooled flow boiling of R134a in an annulus . . . . . . . . 102
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5 Modelling of flow boiling patterns in vertical pipes 115
5.1 Adopted wall heat-partitioning model for high void fractions . . . . . 115
5.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.1 Effect of wall superheat on the flow boiling transition patterns 118
5.2.2 Effect of flow morphologies on the wall heat transfer coefficient124
5.2.3 Comparison of GENTOP and Eulerian-Eulerian two-fluid
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.4 Effect of subcooling on the flow boiling transition patterns . . 129
5.2.5 Effect of inlet fluid velocity on the flow boiling transition patterns
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6 Conclusions and outlook 133
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
References 137
Declaration 155
|
18 |
Comportement thermodynamique de réservoirs d’ergols cryogéniques : étude expérimentale et théorique d’un système de contrôle pour des missions spatiales de longue durée / Characterisation of the atomization regimes of cryogenic propellants used in the thermodynamic control of tanksDemeure, Lauriane 25 October 2013 (has links)
La thèse porte sur l'étude d'un système de contrôle de la pression au sein de réservoirs d’ergols cryogéniques (dihydrogène ou dioxygène) dans le cadre de missions spatiales de longue durée. Ce système de contrôle doit permettre d’éviter la perte excessive d’ergols associée à un contrôle basique de la pression consistant en l’évacuation directe d’une fraction du fluide. Le système alternatif étudié, dit de contrôle thermodynamique, repose sur la réinjection d’un spray sous-refroidi permettant d’abaisser température et pression dans un réservoir soumis à une chauffe (en pratique, le rayonnement solaire). Nous avons analysé les performances de ce système en développant en parallèle un banc d'essai adapté aux conditions du laboratoire, et un modèle théorique de type 0D, à base de bilans globaux, de l’effet du spray sous-refroidi sur les caractéristiques thermodynamiques de l’enceinte. La confrontation des mesures et des calculs a permis de valider l’outil de modélisation théorique. Les caractéristiques du système réel (ensemble des circuits d'injection et de refroidissement) ont ensuite été introduites dans le modèle théorique afin de quantifier de façon réaliste les gains offerts par le système de contrôle thermodynamique, i.e. en prenant en compte la pénalité en masse associée à ces circuits. Des solutions optimales de contrôle de la pression au sein de réservoirs d’ergols cryogéniques lors de missions spatiales de longue durée ont pu alors être proposées. / This PHD thesis deals with the study of a pressure control system inside a cryogenic propellant tank for long duration space missions. This system must be able to reduce propellant losses induced by direct venting, which is the simplest pressure control system. The alternative system which has been studied, called Thermodynamic Vent System (TVS), is based on reinjecting subcooled spray to make the pressure and temperature decrease in a heated tank. The system performance has been analysed developing simultaneously an experimental setup, adapted to laboratory environment, and a theoretical 0D-modelling of subcooled spray impact on tank's thermodynamic characteristics. Facing experimental and theoretical results has permitted to validate the 0D-modelling tool. Inputing the real system characteristics in theoretical modelling has enabled to assess the effective gains of thermodynamic vent system. Finally, optimal solutions to control pressure inside a cryogenic propellant tank for long duration space missions have been proposed.
|
19 |
Experimentelle Untersuchungen zum Blasensieden bei unterkühlten Strömungen: Experimentelle Untersuchungen zum Blasensieden bei unterkühlten StrömungenSchneider, Clemens 28 July 2015 (has links)
Die vorliegende Dissertationsschrift beinhaltet die Ergebnisse der Untersuchung von loka-len und globalen Prozessen der Wärmeübertragung beim unterkühlten Strömungssieden. Sie ist an der Schnittstelle zwischen Reaktorsicherheitsforschung und der experimentellen Thermofluiddynamik für Phasenübergänge einzuordnen.
In technischen Anwendungen zur effizienten Übertragung großer Wärmemengen spielt der Prozess des Siedens eine wichtige Rolle. Dieser Vorgang bewirkt einen starken Anstieg des Wärmetransportes von der beizten Wand an das Fluid bei vergleichsweise geringem Anstieg der Wandtemperatur. Der maximal übertragbare Wärmestrom beim Sieden wird begrenzt durch die sogenannte kritische Wärmestromdichte, deren Überschreitung zum thermomechanischen Versagen der beheizten Komponente führen kann.
Aufgrund der Komplexität dieser Prozesse ist es trotz intensiver Arbeiten in den letzten Jahrzehnten noch nicht gelungen, diese Vorgänge detailliert zu modellieren. Eine Weiter-entwicklung der Modelle zur realistischen Beschreibung des unterkühlten Strömungssie-dens erfordert neuartige Untersuchungen, welche eine genaue Klassifizierung der partiellen Wärmeübergänge des Blasensiedens ermöglichen.
Die Analyse partieller Wärmetransportgrößen beim unterkühlten Strömungssieden sowie der Einfluss variierender thermohydraulischer Randbedingungen ist Schwerpunkt dieser Arbeit. In der entwickelten Versuchsanlage erfolgt die Erfassung der Siedevorgänge bei Strömungsgeschwindigkeiten von 0,1 – 2 m/s und Eintrittstemperaturen von 60 - 98 °C.
Mit Hilfe empfindlicher Temperaturmessungen in einem elektrisch beheizten Kapillarrohr innerhalb des Strömungskanals werden die globalen Vorgänge beim Übergang von Kon-vektion zum Sieden erfasst. Durch eine modellbasierte Bestimmung der Oberflächentem-peratur lassen sich Phänomene nachweisen, welche bisher weitestgehend unbeachtet ge-blieben sind. Die transparente Versuchsstrecke ermöglicht eine Erfassung der lokalen Sie-devorgänge mit optisch und zeitlich hochauflösenden Messverfahren. Durch die Entwick-lung neuer Algorithmen der digitalen Bildverarbeitung wurde eine umfangreiche, kenngrö-ßenorientierte Auswertung der in großem Umfang entstandenen Datenmengen realisiert.
Der Einsatz transparenter und elektrisch leitfähiger Beschichtungen ermöglicht die mikro-skopische Erfassung des Blasenwachstums in weiten thermohydraulischen Parameterberei-chen. Mit erweiterten Bildverarbeitungsalgorithmen erfolgt die detaillierte und dynamische Bewertung des Blasenwachstumsverhaltens. Die statistische Auswertung der Verläufe er-möglicht die Ableitung eines Blasenwachstumsmodells für unterkühltes Strömungssieden.
In einer weiteren Versuchsanordnung werden die lokalen Wärmetransportvorgänge bei der Ablösung quasistatisch gewachsener Blasen mit Hilfe der Infrarot-Thermographie be-stimmt. Dadurch können erstmalig die aus der lokalen Abkühlung der beheizten Oberfläche durch Blasenablösung resultierenden Wärmeströme unter Vernachlässigung der Bla-senbildung experimentell quantifiziert werden. Weiterhin können die bisher theoretisch beschriebenen Driftströmungen beim Aufstieg der Blase experimentell nachgewiesen wer-den. Die ermittelten Größen und Zusammenhänge tragen zur Weiterentwicklung und zum Abbau von Unsicherheiten bei der Modellierung von Wärmetransportvorgängen beim unterkühlten Strömungssieden bei.
|
20 |
Spray Cooling For Land, Sea, Air And Space Based Applications, A Fluid Managment System For Multiple Nozzle Spray Cooling And A Guide To High Heat Flux Heater DesignGlassman, Brian 01 January 2005 (has links)
This thesis is divided into four distinct chapters all linked by the topic of spray cooling. Chapter one gives a detailed categorization of future and current spray cooling applications, and reviews the major advantages and disadvantages that spray cooling has over other high heat flux cooling techniques. Chapter two outlines the developmental goals of spray cooling, which are to increase the output of a current system and to enable new technologies to be technically feasible. Furthermore, this chapter outlines in detail the impact that land, air, sea, and space environments have on the cooling system and what technologies could be enabled in each environment with the aid of spray cooling. In particular, the heat exchanger, condenser and radiator are analyzed in their corresponding environments. Chapter three presents an experimental investigation of a fluid management system for a large area multiple nozzle spray cooler. A fluid management or suction system was used to control the liquid film layer thickness needed for effective heat transfer. An array of sixteen pressure atomized spray nozzles along with an imbedded fluid suction system was constructed. Two surfaces were spray tested one being a clear grooved Plexiglas plate used for visualization and the other being a bottom heated grooved 4.5 x 4.5 cm2 copper plate used to determine the heat flux. The suction system utilized an array of thin copper tubes to extract excess liquid from the cooled surface. Pure water was ejected from two spray nozzle configurations at flow rates of 0.7 L/min to 1 L/min per nozzle. It was found that the fluid management system provided fluid removal efficiencies of 98% with a 4-nozzle array, and 90% with the full 16-nozzle array for the downward spraying orientation. The corresponding heat fluxes for the 16 nozzle configuration were found with and without the aid of the fluid management system. It was found that the fluid management system increased heat fluxes on the average of 30 W/cm2 at similar values of superheat. Unfortunately, the effectiveness of this array at removing heat at full levels of suction is approximately 50% & 40% of a single nozzle at respective 10[degrees]C & 15[degrees]C values of superheat. The heat transfer data more closely resembled convective pooling boiling. Thus, it was concluded that the poor heat transfer was due to flooding occurring which made the heat transfer mechanism mainly forced convective boiling and not spray cooling. Finally, Chapter four gives a detailed guide for the design and construction of a high heat flux heater for experimental uses where accurate measurements of surface temperatures and heat fluxes are extremely important. The heater designs presented allow for different testing applications; however, an emphasis is placed on heaters designed for use with spray cooling.
|
Page generated in 0.0443 seconds