• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-based Subfamily Classification of Homeodomains

Tsai, Jennifer Ming-Jiun 30 July 2008 (has links)
Eukaryotic DNA-binding proteins mediate many important steps in embryonic development and gene regulation. Consequently, a better understanding of these proteins would hopefully allow a more complete picture of gene regulation to be determined. In this study, a structure-based subfamily classification of the homeodomain family of DNA-binding proteins was undertaken in order to determine whether sub-groupings of a protein family could be identified that corresponded to differences in specific function, and identification of subfamily-determining residues was performed in order to gain some insight on functional differences via analysis of the residue properties. Subfamilies appear to have different specific DNA binding properties, according to DNA profiles obtained from TRANSFAC [1] and other sources in the literature. Subfamily-specific residues appear to be frequently associated with the protein-DNA interface and may influence DNA binding via interactions with the DNA phosphate backbone; these residues form a conserved profile uniquely identifying each subfamily.
2

Structure-based Subfamily Classification of Homeodomains

Tsai, Jennifer Ming-Jiun 30 July 2008 (has links)
Eukaryotic DNA-binding proteins mediate many important steps in embryonic development and gene regulation. Consequently, a better understanding of these proteins would hopefully allow a more complete picture of gene regulation to be determined. In this study, a structure-based subfamily classification of the homeodomain family of DNA-binding proteins was undertaken in order to determine whether sub-groupings of a protein family could be identified that corresponded to differences in specific function, and identification of subfamily-determining residues was performed in order to gain some insight on functional differences via analysis of the residue properties. Subfamilies appear to have different specific DNA binding properties, according to DNA profiles obtained from TRANSFAC [1] and other sources in the literature. Subfamily-specific residues appear to be frequently associated with the protein-DNA interface and may influence DNA binding via interactions with the DNA phosphate backbone; these residues form a conserved profile uniquely identifying each subfamily.
3

Exploring glycoside hydrolase family 5 (GH5) enzymes

Wang, Yang January 2013 (has links)
In 1990, the classification of carbohydrate-active enzymes (CAZymes) was introduced by the scientist Bernard Henrissat. According to sequence similarity, these enzymes were separated into families with conserved structures and reaction mechanisms. One interesting class of CAZymes is the group of glycoside hydrolases (GHs) containing more than 138000 modules divided into 131 families as of February 2013. One of the most versatile and the largest of these GH families, containing enzymes with numerous biomass-deconstructing activities, is glycoside hydrolase family 5 (GH5). However, for large and diverse families like the GH5 family, another layer of classification is required to get a better understanding of the evolution of diverse enzyme activities. In Paper I, a new subfamily classification of GH5 is presented in order to sort the family members into distinct groups with predictive power. In total, 51 subfamilies were defined. Despite the fact that several hundred GH5 enzymes have been characterized, 20 subfamilies lacking biochemically characterized enzymes and 38 subfamilies without structural data were identified. These highlighted subfamilies contain interesting targets for future investigation. The GH5 family includes endo-β-mannanases catalyzing the hydrolysis of the β-1,4-linked backbone of mannan polysaccharides, which are common hemicelluloses found as storage and structural polymers in plant cell walls. Mannans are commonly utilized as raw biomaterials in food, feed, paper, textile and cosmetic industries, and mannanases are often applied for modifying and controlling the property of mannan polysaccharides in such applications. The overwhelming majority of characterized mannanases are from microbial origin. The situation for plant mannanases is quite different, as the catalytic properties for only a handful have been determined. Paper II describes the first characterization of a heterologously expressed Arabidopsis β-mannanase. / År 1990 introducerade forskaren Bernard Henrissat en klassificering av kolhydrataktiva enzymer (CAZymer), enligt vilken enzymerna - baserat på sekvenslikhet - delades in i familjer med konserverade strukturer och reaktionsmekanismer. En intressant CAZym-klass är glykosidhydrolaserna (GH), en klass som i februari 2013 innehöll fler än 138000 katalytiska moduler indelade i 131 olika familjer. En av de största och mest varierade av GH-familjerna är glykosidhydrolasfamilj 5 (GH5), vilken innehåller en mångfald av identifierade enzymaktiviteter relevanta för nedbrytning av biomassa. För stora och diversifierade familjer som GH5 krävs det dock ytterligare en klassificeringsnivå för att bättre förstå evolutionen och uppkomsten av de många förekommande enzymaktiviteterna. I manuskript I presenteras en ny uppdelning av GH5 enzymer i subfamiljer med syfte att dela upp familjemedlemmarna i distinkta grupper som representerar olika funktioner. Utifrån denna klassificering kan sedan ett enzyms funktion förutsägas baserat på vilken subfamilj det tillhör. Totalt definierades 51 subfamiljer. Trots att hundratals GH5 enzymer har karaktäristerats så visade det sig att 20 av subfamiljerna helt saknar biokemiskt karaktäriserade enzymer och 38 av dem saknar publicerade proteinstrukturer. Dessa subfamiljer är särskilt intressanta för framtida studier. GH5-familjen inkluderar endo-β-mannanaser som katalyserar hydrolysen av den β-1,4-länkade huvudkedjan i mannanpolysackarider. Dessa växtpolymerer som ingår i hemicellulosagruppen är vanligt förekommande i cellväggarna, där de fungerar som energilagringsmolekyler eller har en strukturell funktion. Mannaner används ofta som råmaterial för industriell livs- och djurfodersproduktion, papper, textilier och kosmetika. I dessa processer behövs ofta mannanaser för modifiering och kontroll av egenskaperna hos dessa polysackarider. Den överväldigande majoriteten av alla karaktäriserade mannanaser kommer från mikroorganismer. Endast för ett fåtal växtmannanaser har de katalytiska egenskaperna analyserats. Manuskript II beskriver den första karaktäriseringen av ett heterologt uttryckt β-mannanas från Arabidopsis. / <p>QC 20130506</p>

Page generated in 0.108 seconds