• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 64
  • 17
  • 14
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Planck's dusty GEMS III. A massive lensing galaxy with a bottom-heavy stellar initial mass function at z=1.5

Canameras, R., Nesvadba, N. P. H., Kneissl, R., Limousin, M., Gavazzi, R., Scott, D., Dole, H., Frye, B., Koenig, S., Le Floc'h, E., Oteo, I. 24 March 2017 (has links)
We study the properties of the foreground galaxy of the Ruby, the brightest gravitationally lensed high-redshift galaxy on the sub-millimeter sky as probed by the Planck satellite, and part of our sample of Planck's dusty GEMS. The Ruby consists of an Einstein ring of 1.4" diameter at z = 3.005 observed with ALMA at 0.1" resolution, centered on a faint, red, massive lensing galaxy seen with HST/WFC3, which itself has an exceptionally high redshift, z = 1.525 +/- 0.001, as confirmed with VLT/X-shooter spectroscopy. Here we focus on the properties of the lens and the lensing model obtained with LENSTOOL. The rest-frame optical morphology of this system is strongly dominated by the lens, while the Ruby itself is highly obscured, and contributes less than 10% to the photometry out to the K band. The foreground galaxy has a lensing mass of (3.70 +/- 0.35) x 10(11) M-Theta Magnification factors are between 7 and 38 for individual clumps forming two image families along the Einstein ring. We present a decomposition of the foreground and background sources in the WFC3 images, and stellar population synthesis modeling with a range of star-formation histories for Chabrier and Salpeter initial mass functions (IMFs). Only the stellar mass range obtained with the latter agrees well with the lensing mass. This is consistent with the bottom-heavy IMFs of massive high-redshift galaxies expected from detailed studies of the stellar masses and mass profiles of their low-redshift descendants, and from models of turbulent gas fragmentation. This may be the first direct constraint on the IMF in a lens at z = 1.5, which is not a cluster central galaxy.
32

Detection of Exocometary CO within the 440Myr Old Fomalhaut Belt: A Similar CO+ CO2 Ice Abundance in Exocomets and Solar System Comets

Matra, L., MacGregor, M. A., Kalas, P., Wyatt, M. C., Kennedy, G. M., Wilner, D. J., Duchene, G., Hughes, A. M., Pan, M., Shannon, A., Clampin, M., Fitzgerald, M. P., Graham, J. R., Holland, W. S., Panic, O., Su, K. Y. L. 07 June 2017 (has links)
Recent Atacama Large Millimeter/submillimeter Array observations present mounting evidence for the presence of exocometary gas released within Kuiper Belt analogs around nearby main-sequence stars. This represents a unique opportunity to study their ice reservoir at the younger ages when volatile delivery to planets is most likely to occur. We here present the detection of CO J=2-1 emission colocated with dust emission from the cometary belt in the 440 Myr old Fomalhaut system. Through spectrospatial filtering, we achieve a 5.4s detection and determine that the ring's sky-projected rotation axis matches that of the star. The CO mass derived (0.65-42) x10(-7) M-circle plus is the lowest of any circumstellar disk detected to date and must be of exocometary origin. Using a steady-state model, we estimate the CO+ CO2 mass fraction of exocomets around Fomalhaut to be between 4.6% and 76%, consistent with solar system comets and the two other belts known to host exocometary gas. This is the first indication of a similarity in cometary compositions across planetary systems that may be linked to their formation scenario and is consistent with direct interstellar medium inheritance. In addition, we find tentative evidence that(49 +/- 27)% of the detected flux originates from a region near the eccentric belt's pericenter. If confirmed, the latter may be explained through a recent impact event or CO pericenter glow due to exocometary release within a steady-state collisional cascade. In the latter scenario, we show how the azimuthal dependence of the CO release rate leads to asymmetries in gas observations of eccentric exocometary belts.
33

Three dimensional T-ray inspection systems.

Ferguson, Bradley S. January 2004 (has links)
Pulsed terahertz (THz) systems are an emergent technology, finding diverse applications as they approach maturity. From their birth in the late 1980's to the wealth of alternate sources and imaging modalities now available, the rise has been fuelled by the expectation that this will prove a world changing technology. This Thesis takes an application focused approach and seeks to provide enabling systems and algorithms for the development of functional imaging systems with broad potential application in security inspection, non-destructive testing and biomedical imaging. Three dimensional pulsed THz imaging systems were first introduced in 1996 using a reflection-mode ultrasound-like configuration. This Thesis builds upon this former work by focusing on transmission mode tomography systems using pulsed THz radiation. Several novel 3D imaging modalities are introduced. The hardware architectures, based on optoelectronic generation and detection of THz radiation are described. Approximations to the wave equation are derived, allowing linear reconstruction algorithms to recover 3D structural information fromthe transmitted THz field. Finally the systems are demonstrated and the achievable resolution and image quality are investigated. Three imaging architectures are developed herein: 1. T-ray holography allows the 3D distribution of point scatters to be resolved based on a single projection image utilising a novel reconstruction algorithm based on the windowed Fourier transform and back-propagation of the Fresnel-Kirchhoff diffraction equation. 2. T-ray diffraction tomography utilises the diffracted THz field to allow a Helmholtz equation based, frequency-dependent reconstruction to be performed and the THz spectrum at each pixel to be calculated. 3. T-ray Computed Tomography (CT) uses analogous techniques to X-ray CT, based on the Radon transform, to provide 3D T-ray reconstructions of unprecedented fidelity. These techniques have important applications in material identification, which is investigated in the second part of this Thesis. Pulsed THz spectroscopy has been widely acclaimed for its potential to identify different materials based on their spectral properties. The second part of this Thesis presents algorithms towards this goal. Three case studies are performed focusing on biomaterial classification, anthrax detection and in vitro osteosarcoma cell differentiation. A classification framework is developed to process the THz spectral data and identify specific materials. A linear filter model is introduced to describe the system response of different materials, and the filter taps are utilised for feature extraction. This technique is demonstrated for biomaterial and anthrax classification. For cell differentiation a genetic algorithm is used to select deconvolved frequency components to train a classifier. In each case a high classification accuracy is demonstrated, highlighting the promise and potential of three dimensional T-ray inspection systems. / Thesis (Ph.D.)--School of Electrical and Electronic Engineering, 2004.
34

T-ray biosensing / by Samual Peter Mickan. / Terahertz radiation biosensing / SPM_PhD_Thesis [electronic resource]

Mickan, Samuel Peter January 2003 (has links)
"December, 2003" / Includes bibliographical references (p. 311-348) / Accompanying CD-ROM entitled: 'SPM_PhD_Thesis' contains MATLAB_Algorithms (algorithms for T-ray data analysis and display, as described in the Thesis); Appendix D (Example_Raw_Data_Files - examples of raw T-ray data files, used by the MATLAB algorithms in MATLAB_Algorithms); and Thesis_PDF (a copy of the Thesis printed in Adobe's Portable Document Format (PDF)). / System requirements for accompanying CD-ROM: CD-ROM drive ; Adobe Acrobat reader ; Matlab software. / xxxiv, 358 p. : ill. (col.) ; 30 cm. + 1 CD-ROM (col. ill. ; 4 3/4 in.) / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, School of Electrical and Electronic Engineering, 2004
35

Physically Modeling High-Redshift Ultraluminous Infrared Galaxies

Hayward, Christopher 02 January 2013 (has links)
We have used a combination of hydrodynamical simulations, dust radiative transfer, and an empirically based analytical model for galaxy number densities and merger rates in order to physically model the bright high-redshift submillimeter-selected galaxy (SMG) population. We report the results of three projects: In the first we study the dependence of a galaxy’s observed-frame submillimeter (submm) flux on its physical properties. One of our principal conclusions is that the submm flux scales significantly more weakly with star formation rate for starbursts than for quiescently star-forming galaxies. Consequently, we argue that the SMG population is not exclusively merger-induced starbursts but rather a mix of merger-induced starbursts, early-stage mergers where two quiescently star-forming disk galaxies are blended into one submm source ("galaxy-pair SMGs"), and isolated disk galaxies. In the second work we present testable predictions of this model by demonstrating how quiescently star-forming and starburst SMGs can be distinguished from integrated data alone. Starbursts tend to have higher luminosity, effective dust temperature, global star formation efficiency \((L_{IR}/M_{gas})\), and infrared excess \((L_{IR}/L_{FUV})\) and tend to lie significantly above the star formation rate-stellar mass relation defined by quiescently star-forming galaxies. These diagnostics can be used to observationally determine the relative contribution of quiescently star-forming and starburst galaxies to the SMG population. In the final work we present the SMG number density, cumulative number counts, and redshift distribution predicted by our model. We show that, contrary to previous claims, the observed SMG number counts do not provide evidence for a top-heavy initial mass function. We also show that starbursts and galaxy-pair SMGs both contribute significantly to the bright SMG counts, whereas isolated disks contribute significantly only at the faint end. / Astronomy
36

Heterodyne Arrays for Terahertz Astronomy

Kloosterman, Jenna Lynn January 2014 (has links)
The clouds of gas and dust that constitute the Interstellar Medium (ISM) within the Milky Way and other galaxies can be studied through the spectral lines of the atoms and molecules. The ISM follows a lifecycle in which each of its phases can be traced through spectral lines in the Terahertz (THz) portion of the electromagnetic spectrum, loosely defined as 0.3 - 3 THz. Using the high spectral resolution afforded by heterodyne instruments, astronomers can potentially disentangle the large-scale structure and kinematics within these clouds. In order to study the ISM over large size scales, large format THz heterodyne arrays are needed. The research presented in this dissertation focuses on the development of two heterodyne array receiver systems for ISM studies, SuperCam and a Super-THz (>3 THz) receiver. SuperCam is a 64-pixel heterodyne imaging array designed for use on ground-based submillimeter telescopes to observe the astrophysically important CO J=3-2 emission line at 345 GHz. The SuperCam focal plane stacks eight, 1x8 mixer subarrays. Each pixel in the array has its own integrated superconductor-insulator-superconductor (SIS) mixer and Low Noise Amplifier (LNA). In spring 2012, SuperCam was installed on the University of Arizona Submillimeter Telescope (SMT) for its first engineering run with 32 active pixels. A second observing run in May 2013 had 52 active pixels. With the outliers removed, the median double sideband receiver temperature was 104 K. The Super-THz receiver is designed to observe the astrophysically important neutral atomic oxygen line at 4.7448 THz. The local oscillator is a third-order distributed feedback Quantum Cascade Laser operating in continuous wave mode at 4.741 THz. A quasi-optical hot electron bolometer is used as the mixer. We record a double sideband receiver noise temperature of 815 K, which is ~7 times the quantum noise limit and an Allan variance time of 15 seconds at an effective noise fluctuation bandwidth of 18 MHz. Heterodyne performance is confirmed by measuring a methanol line spectrum. By combining knowledge of large array formats from SuperCam and quasi-optical mixers, initial tests and designs are presented to expand the single pixel 4.7 THz receiver into a quasi-optical 16-pixel array.
37

A cryogenic detector for submillimetre astronomy

Gom, Bradley Gustav, University of Lethbridge. Faculty of Arts and Science January 1999 (has links)
Over the last several years, a submillimetre astronomical polarizing Fourier Transform Spectrometer (FTS) has been developed for use at the James Clerk Maxwell Telescope (JCMT) located atop Mauna Kea, Hawaii. A new liquid3 He cooled dual polarization detector system has been carefully designed for use with this FTS to eliminate noise problems encountered with UKT14, the JCMT facility bolometric detector. The objective of this thesis is to evaluate and optimize the performance of the new detector system. The design of the detector system is discussed, and the noise performance of the system is evaluated. The system performance is determined from photmetric, classical B-I, and spectroscopic measurements. Compared to UKT14, the intrinsic bolometer noise is reduced by a factor of - 2. More importantly, the spectral signal to noise ratio is improved by a factor of - 10 due to the elimination of electrical pickup and microphone noise in the detector signal. / xiv, 156 leaves : ill. ; 28 cm.
38

The Balloon-borne Large Aperture Submillimeter Telescope and Its Rebirth as a Polarimeter

Thomas, Nicholas E 14 December 2011 (has links)
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a 1.8 meter Cassegrain telescope that operates in three bands (250, 350, and 500 μm), each with 30% bandwidth. The detection system is comprised of 280 silicon-nitride micromesh bolometers distributed on three focal plane arrays with 30”, 42”, and 60” FWHM (full width at half max) beam sizes, respectively. BLAST's goal is to study the evolutionary history and processes associated with star formation. Earth's atmosphere is opaque to submillimeter radiation and astronomical observations in this wavelength are best conducted at high altitudes. BLAST is designed to be flown above 99.5% of the atmosphere on a stratospheric balloon. BLAST has made three scientific flights and this thesis covers the last two. The second flight was made in 2006 from McMurdo, Antarctica and studied the evolutionary history and processes associated with star formation. For the third flight, BLAST was reconfigured as a polarimeter (BLAST-Pol) and was also launched from McMurdo in December 2010. BLAST-Pol's objective is to determine what role, if any, magnetic fields play in star formation. This thesis will describe the BLAST-Pol instrument and provide a summery of key observations made by the 2006 flight.
39

T-ray biosensing / by Samual Peter Mickan. / Terahertz radiation biosensing / SPM_PhD_Thesis [electronic resource]

Mickan, Samuel Peter January 2003 (has links)
"December, 2003" / Includes bibliographical references (p. 311-348) / Accompanying CD-ROM entitled: 'SPM_PhD_Thesis' contains MATLAB_Algorithms (algorithms for T-ray data analysis and display, as described in the Thesis); Appendix D (Example_Raw_Data_Files - examples of raw T-ray data files, used by the MATLAB algorithms in MATLAB_Algorithms); and Thesis_PDF (a copy of the Thesis printed in Adobe's Portable Document Format (PDF)). / System requirements for accompanying CD-ROM: CD-ROM drive ; Adobe Acrobat reader ; Matlab software. / xxxiv, 358 p. : ill. (col.) ; 30 cm. + 1 CD-ROM (col. ill. ; 4 3/4 in.) / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, School of Electrical and Electronic Engineering, 2004
40

T-ray biosensing /

Mickan, Samuel Peter. January 2003 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, School of Electrical and Electronic Engineering, 2004. / "December, 2003" Includes bibliographical references (p. 311-348).

Page generated in 0.0654 seconds