• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • Tagged with
  • 15
  • 13
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthesis of biohybrid electrocatalysts using electroactive bacteria

Jimenez Sandoval, Rodrigo J. 03 1900 (has links)
Environmental pollution and health problems created by fossil fuels have led to the development of alternative energies such as solar and wind energies, hydroelectric power, and green hydrogen. The use of biohybrid materials in the development of this type of alternative energies is recent. Biohybrid materials are a unique type of advanced materials that have a biological component that can be a biomolecule or a whole cell and an abiotic or non-biological component that can be a ceramic, a synthetic polymer, or a metal, among others. They have applications in different fields that range from construction (such as bioconcrete) to catalysis (such as artificial enzymes). There are examples in the literature in which bacteria are hybridized with reduced graphene oxide or manganese oxide to catalyze the oxygen evolution of the electrochemical water splitting reaction that produces green hydrogen. The focus of this dissertation is to synthesize efficient biohybrid catalysts following a whole cell approach using electroactive bacteria as the biological component and metallic precursors that form particles ranging from single atoms, nanoclusters, and nanoparticles as the abiotic component. The Fe molecule that is part of the heme group of C-type cytochromes in the outer membrane of Geobacter sulfurreducens acted as the reduction center that allowed the synthesis and hybridization of the metals with the bacteria. Single atom metal catalyst of Ir, Pt, Ru, Cu, and Pd were synthesized and demonstrated a bifunctional catalytic activity towards the hydrogen evolution reaction and the oxygen evolution reaction. Ni single atoms were also synthesized with excellent activity in the water splitting reactions making this biohybrid catalyst very efficient but also green, as Ni is an abundant and cheap metal. Pd nanoclusters with size-control were synthesized by controlling the metal concentration, dosing, and incubation times and were tested in the electrochemical water splitting. Overall, the findings of these studies provide new knowledge on the field of biohybrid materials by contributing with novel methodologies for the synthesis of these materials and the application in the green hydrogen production with high efficiencies.
12

Energy and the Environment: Electrochemistry of Electron Transport Pathways in Anode-Respiring Bacteria and Energy Technology and Climate Change in Science Textbooks

January 2016 (has links)
abstract: The finite supply of current energy production materials has created opportunities for the investigation of alternative energy sources in many fields. One example is the use of microorganisms in bioenergy applications, such as microbial fuel cells. Present in many types of environments, microorganisms with the ability to respire solid electron acceptors have become of increasing relevance to alternative energy and wastewater treatment research. In this dissertation, several aspects of anode respiration are investigated, with the goal of increasing the limited understanding of the mechanisms of electron transport through the use of advanced electrochemical methods. Biofilms of Geobacter sulfurreducens, the model anode respiring organism, as well as its alkaliphilic relative, Geoalkalibacter ferrihydriticus, were investigated using chronoamperometry, electrochemical impedance spectroscopy, and cyclic voltammetry. In G. sulfurreducens, two distinct pathways of electron transport were observed through the application of advanced electrochemical techniques on anode biofilms in microbial electrochemical cells. These pathways were found to be preferentially expressed, based on the poised anode potential (redox potential) of the electrode. In Glk. ferrihydriticus, four pathways for electron transport were found, showing an even greater diversity in electron transport pathway utilization as compared to G. sulfurreducens. These observations provide insights into the diversity of electron transport pathways present in anode-respiring bacteria and introduce the necessity of further characterization for pathway identification. Essential to science today, communication of pressing scientific issues to the lay audience may present certain difficulties. This can be seen especially with the topics that are considered socio-scientific issues, those considered controversial in society but not for scientists. This dissertation explores the presentation of alternative and renewable energy technologies and climate change in undergraduate education. In introductory-level Biology, Chemistry, and Physics textbooks, the content and terminology presented were analyzed for individual textbooks and used to evaluate discipline-based trends. Additional extensions were made between teaching climate change with the active learning technique of citizen science using past research gains from studies of evolution. These observations reveal patterns in textbook content for energy technologies and climate change, as well as exploring new aspects of teaching techniques. / Dissertation/Thesis / Doctoral Dissertation Biological Design 2016
13

Microbial fuel cells for organic dye degradation

Stefánsdóttir, Lára Kristín January 2017 (has links)
No description available.
14

Microbial Fuel cells, applications and biofilm characterization

Krige, Adolf January 2019 (has links)
Since the 1900’s it has been known that microorganisms are capable of generating electrical power through extracellular electron transfer by converting the energy found organic compounds (Potter, 1911). Microbial fuel cells (MFCs) has garnered more attention recently, and have shown promise in several applications, including wastewater treatment (Yakar et al., 2018), bioremediation (Rosenbaum & Franks, 2014), biosensors (ElMekawy et al., 2018) desalination (Zhang et al., 2018) and as an alternative renewable energy source in remote areas (Castro et al., 2014). In MFCs catalytic reactions of microorganisms oxidize an electron donor through extracellular electron transfer to the anode, under anaerobic conditions, with the cathode exposed to an electron acceptor, facilitating an electrical current (Zhuwei, Haoran & Tingyue, 2007; Lovley, 2006). For energy production in remote areas a low cost and easily accessible feed stock is required for the MFCs. Sweet sorghum is a drought tolerant feedstock with high biomass and sugar yields, good water-use efficiency, established production systems and the potential for genetic improvements. Because of these advantages sweet sorghum stalks were proposed as an attractive feedstock (Rooney et al., 2010; Matsakas & Christakopoulos, 2013). Dried sweet sorghum stalks were, therefore, tested as a raw material for power generation in a MFC, with anaerobic sludge from a biogas plant as inoculum (Sjöblom et al., 2017a). Using sorghum stalks the maximum voltage obtained was 546±10 mV, the maximum power and current density of 131±8 mW/m2 and 543±29 mA/m2 respectively and the coulombic efficiency was 2.2±0.5%. The Ohmic resistances were dominant, at an internal resistance of 182±17 Ω, calculated from polarization data. Furthermore, hydrolysis of the dried sorghum stalks did not improve the performance of the MFC but slightly increased the total energy per gram of substrate. During the MFC operation, the sugars were quickly fermented to formate, acetate, butyrate, lactate and propionate with acetate and butyrate being the key acids during electricity generation. Efficient electron transfer between the microorganisms and the electrodes is an essential aspect of bio-electrochemical systems such as microbial fuel cells. In order to design more efficient reactors and to modify microorganisms, for enhanced electricity production, understanding the mechanisms and dynamics of the electron transport chain is important. It has been found that outer membrane C-type cytochromes (OMCs) (including omcS and omcZ discussed in this study) play a key role in the electron transport chain of Geobacter sulfurreducens, a well-known, biofilm forming, electro-active microorganism  (Millo et al., 2011; Lovley, 2008). It was found that Raman microscopy is capable of providing biochemical information, i.e., the redox state of c-type cytochromes (cyt-C) without damaging the microbial biofilm, allowing for in-situ observation. Raman microscopy was used to observe the oxidation state of OMCs in a suspended culture, as well as in a biofilm of an MFC. First, the oxidation state of the OMCs of suspended cultures from three G. sulfurreducens strains (PCA, KN400 and ΔpilA) was analyzed. It was found that the oxidation state can also be used as an indicator of the metabolic state of the cells, and it was confirmed that PilA, a structural pilin protein essential for long range electron transfer, is not required for external electron transfer. Furthermore, we designed a continuous, anaerobic MFC enabling in-situ Raman measurements of G. sulfurreducens biofilms during electricity generation, while poised using a potentiostat, in order to monitor and characterize the biofilm. Two strains were used, a wild strain, PCA, and a mutant, ΔOmcS. The cytochrome redox state, observed through the Raman spectra, could be altered by applying different poise voltages to the electrodes. This change was indirectly proportional to the modulation of current transferred from the cytochromes to the electrode. This change in Raman peak area was reproducible and reversible, indicating that the system could be used, in-situ, to analyze the oxidation state of proteins responsible for the electron transfer process and the kinetics thereof.
15

Fe(III) reduction in Hanford sediments and its application to chromium immobilization

Bishop, Michael Edward 03 August 2015 (has links)
No description available.

Page generated in 0.0374 seconds