• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 15
  • 8
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 101
  • 48
  • 39
  • 39
  • 30
  • 21
  • 18
  • 18
  • 18
  • 16
  • 16
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Topics in nonlinear self-dual supersymmetric theories

McCarthy, Shane A. January 2006 (has links)
[Truncated abstract. Formulae and special characters can only be approximated. See PDF version for accurate reproduction.] Theories of self-dual supersymmetric nonlinear electrodynamics are generalized to a curved superspace of 4D N = 1 supergravity, for both the old-minimal and the newminimal versions of N = 1 supergravity. We derive the self-duality equation, which has to be satisfied by the action functional of any U(1) duality invariant model of a massless vector multiplet, and show that such models are invariant under a superfield Legendre transformation. We construct a family of self-dual nonlinear models, which includes a minimal curved superspace extension of the N = 1 supersymmetric Born- Infeld action. The supercurrent and supertrace of such models are explicitly derived and proved to be duality invariant. The requirement of nonlinear self-duality turns out to yield nontrivial couplings of the vector multiplet to Kähler sigma models. We explicitly construct such couplings in the case when the matter chiral multiplets are inert under the duality rotations, and more specifically to the dilaton-axion chiral multiplet when the group of duality rotations is enhanced to SL(2,R). The component structure of the nonlinear dynamical systems introduced proves to be more complicated, especially in the presence of supergravity, as compared with well-studied effective supersymmetric theories containing at most two derivatives (including nonlinear Kähler sigma-models). As a result, when deriving their canonically normalized component actions, the traditional approach becomes impractical and cumbersome. We find it more efficient to follow the Kugo-Uehara scheme which consists of (i) extending the superfield theory to a super-Weyl invariant system; and then (ii) applying a plain component reduction along with imposing a suitable super-Weyl gauge condition. This scheme is implemented in order to derive the bosonic action of the SL(2,R) duality invariant coupling to the dilaton-axion chiral multiplet and a Kähler sigma-model.
32

Exceptional Field Theory and Supergravity / Théorie des Champs Exceptionnels et Supergravité

Baguet, Arnaud 30 June 2017 (has links)
Dans cette thèse, nous présentons des avancements récents en Théorie des Champs Doubles (TCD) et Théories des Champs Exceptionnels (TCE). Ces théories ont la particularité d’être des reformulations de supergravité dans lesquelles les symétries de dualité sont explicites avant toute réduction dimensionnelle. Ces reformulations se basent sur la définition d’un espace-temps étendu qui géométrise le groupe de T-dualité en TCD et les groupes exceptionnels de U-dualité en TCE. Tous les champs de cet espace sont soumis à une contrainte de section qui restreint leur dépendance en coordonnées. Il existe plusieurs solutions à la contrainte de section, qui correspondent donc à des théories différentes. Dans ce sens, le formalisme des théories des champs étendues amène à une unification de ces théories. De plus, grâce à un outil spécifique aux théories des champs étendues, l’ansatz de Scherk-Schwarz généralisé, il est possible de réécrire les ansatz compliqué de type Kaluza-Klein en supergravité sous une forme élégante et compacte: un produit matriciel en dimensions supérieures. Ici, nous présentons plusieurs exemples de l’efficacité de l’ansatz de Scherk-Schwarz généralisé. En particulier, nous prouvons deux conjectures concernant les troncations cohérentes: la réduction dite “de Pauli” de la corde bosonique ainsi que la supergravité de type IIB sur AdS5 x S5. La dernière application de cet ansatz concerne la théorie de type IIB généralisée, apparue récemment dans l’étude des système intégrables, et son plongement dans la TCE E6(6). Enfin, nous présentons la complétion supersymétrique de la TCE E8(8) bosonique. / In this thesis, recent developments in Double Field Theory (DFT) and Exceptional Field Theory (EFT) are presented. They are reformulation of supergravity in which duality symmetries are made manifest before dimensional reduction. This is achieved through the definition of an extended spacetime that “geometrises” the T-duality group O(d,d) in DFT and exceptional U-duality groups in EFT. All functions on this extended space are subject to a covariant `section constraint', whose solutions then restrict the coordinates dependency of the fields. There exist different solutions to the section constraint that correspond to different theories. In this sense, different theories are unified within the formalism of extended field theories. Moreover, extended field theories possess a powerful tool to study compactifications: the generalised Scherk-Schwarz ansatz.Here, we present several examples of the effectiveness of the generalised Scherk-Schwarz ansatz. In particular, we proved two conjectures regarding consistent truncations: the so-called Pauli reduction of the bosonic string on group manifolds and type IIB supergravity on AdS5 x S5. Another application is presented on the embedding of generalised type IIB within the E6(6) EFT, which recently appeared in the study of integrable systems.Finally, we present the supersymmetric completion of the bosonic E8(8) EFT.
33

Contrainte sur la brisure de supersymétrie par médiation gravitationnelle / Supersymmetry breaking models and phenomenological consequences

Benhenni, Amine 10 December 2010 (has links)
La supersymétrie représente le cadre théorique phare en physique des particules pour prendre la relève du modèle standard. Cependant, en tant que cadre général, il dispose de beaucoup de liberté dans sa mise en oeuvre, notamment au niveau des modèles de brisure. Le travail principal de cette thèse consiste à tenter de réduire l'espace des paramètres par des considérations théoriques, en trouvant un sous-espace réduit dans les modèles de brisure par médiation gravitationnelle, en utilisant les méthodes de minimisation du potentiel effectif développé dans les scénarios dits no-scale. / Supersymmetry is the most preferred theoretical framework that could replace and complete the standard model of particle physics. However it is hard to distinguish clearly between all the possible models allowed.During this thesis, we tried to reduce the arbitrariness in the choice of some parameters in supergravity breaking models, by looking at minimisation methods introduced in no-scale supergravity scenarios.
34

\"Branas em supergravidade\" / Branes in supergravity

Bevilaqua, Leandro Ibiapina 04 May 2006 (has links)
Este trabalho tem o objetivo de rever a obtenção das soluções do tipo brana em supergravidade e contém uma dedução detalhada das soluções extrema e negra. A fim de motivar algumas escolhas feitas ao longo do cálculo, o trabalho inclui uma breve revisão dos conceitos advindos da teoria de cordas e supersimetria. Esta revisão nos permitirá ainda relacionar as soluções da supergravidade com as branas da teoria de cordas e tecer considerações sobre o papel desta relação na dualidade entre teoria de calibre e gravitação. / This work intends to review the brane solutions of supergravity and contains a datailed deduction of the extremal and black solutions. In order to provide some motivations to the choices through the calculation, this work includes a brief review of some concepts from string theory and supersymmetry. This review will enable us to relate the supergravity solutions to string theory\'s branes and to make considerations about the role of this relationship in the duality between gauge and gravity theories.
35

The double-copy method for supergravity amplitudes

Ben-Shahar, Maor January 2019 (has links)
The double-copy construction enables the calculation of scattering amplitudes in theories of gravity by combining amplitudes from gauge theories. It relies on obtaining numerators that obey a duality between color and numerator factors, called color-kinematics duality. This construction is reviewed, along with the spinor-helicity formalism for onshell states and supersymmetry in amplitudes. Using generalized unitarity, a one-loop amplitude is verified from literature for a N = 2 theory obeying color-kinematics duality. This amplitude, along with a one-loop amplitude for a N = 0 theory are combined with the double copy in order to produce one-loop amplitudes from homogeneous supergravities. The one-loop divergence is studied with the methods of counterterm analysis, that is, operators necessary to cancel the on-shell matrix element of the divergence are identified for the amplitudes studied. It is interesting to note that all vectors produced from the double copy behave in the same way, that is, have the same divergence, for the four special cases of the magical supergravities. Furthermore, one of the counterterms vanishes for these four special cases, which is likely related to the enhanced symmetry that these theories posses.
36

Kac-Moody algebraic structures in supergravity theories/ Les algèbres de Kac-Moody dans les théories de supergravité

Tabti, Nassiba 22 September 2009 (has links)
A lot of developments made during the last years show that Kac-Moody algebras play an important role in the algebraic structure of some supergravity theories. These algebras would generate infinite-dimensional symmetry groups. The possible existence of such symmetries have motivated the reformulation of these theories as non-linear sigma-models based on the Kac-Moody symmetry groups. Such models are constructed in terms of an infinite number of fields parametrizing the generators of the corresponding algebra. If these conjectured symmetries are indeed actual symmetries of certain supergravity theories, a meaningful question to elucidate will be the interpretation of this infinite tower of fields. Another substantial problem is to find the correspondence between the sigma-models, which are explicitly invariant under the conjectured symmetries, and these corresponding space-time theories. The subject of this thesis is to address these questions in certain cases. This dissertation is divided in three parts. In Part I, we first review the mathematical background on Kac-Moody algebras required to understand the results of this thesis. We then describe the investigations of the underlying symmetry structure of supergravity theories. In Part II, we focus on the bosonic sector of eleven-dimensional supergravity which would be invariant under the extended symmetry E_{11}. We study its subalgebra E_{10} and more precisely the real roots of its affine subalgebra E_9. For each positive real roots of E_9 we obtain a BPS solution of eleven-dimensional supergravity or of its exotic counterparts. All these solutions are related by U-dualities which are realized via E_9 Weyl transformations. In Part III, we study the symmetries of pure N=2 supergravity in D=4. As is known, the dimensional reduction of this model with one Killing vector is characterized by a non-linearly realized symmetry SU(2,1). We consider the BPS brane solutions of this theory preserving half of the supersymmetry and the action of SU(2,1) on them. Infinite-dimensional symmetries are also studied and we provide evidence that the theory exhibits an underlying algebraic structure described by the Lorentzian Kac-Mody group SU(2,1)^{+++}. This evidence arises from the correspondence between the bosonic space-time fields of N=2 supergravity in D=4 and a one-parameter sigma-model based on the hyperbolic group SU(2,1)^{++}. It also follows from the structure of BPS brane solutions which is neatly encoded in SU(2,1)^{+++}. As a worthy by-product of our analysis, we obtain a regular embedding of su(2,1)^{+++} in E_{11} based on brane physics./ Nombreuses sont les recherches récentes indiquant que différentes théories de gravité couplée à un certain type de champs de matière pourraient être caractérisées par des algèbres de Kac-Moody. Celles-ci généreraient des symétries infinies-dimensionnelles. L'existence possible de ces symétries a motivé la reformulation de ces théories par des actions explicitement invariantes sous les transformations du groupe de Kac-Moody. Ces actions sont construites en termes d'une infinité de champs associés à l'infinité de générateurs de l'algèbre correspondante. Si la conjecture de ces symétries est exacte, qu'en est-il de l'interprétation de l'infinité de champs? Qu'en est-il d'autre part de la correspondance entre ces actions explicitement invariantes sous les groupes de Kac-Moody et les théories d'espace-temps correspondantes? C'est autour de ces questions que gravite cette thèse. Nous nous sommes d'abord focalisés sur le secteur bosonique de la supergravité à 11 dimensions qui possèderait selon diverses études une symétrie étendue E_{11}. Nous avons étudié la sous-algèbre E_{10} et plus particulièrement les racines réelles de sa sous-algèbre affine E_9. Pour chacune de ces racines, nous avons obtenu une solution BPS de la supergravité à 11 dimensions dépendant de deux dimensions d'espace non-compactes. Cette infinité de solutions résulte de transformations de Weyl successives sur des champs dont l'interprétation physique d'espace-temps était connue. Nous avons ensuite analysé les symétries de la supergravité N=2 à 4 dimensions dont le secteur bosonique contient la gravité couplée à un champ de Maxwell. Cette théorie réduite sur un vecteur de Killing est caractérisée par la symétrie SU(2,1). Nous avons considéré les solutions de brane BPS qui préservent la moitié des supersymétries ainsi que l'action du groupe SU(2,1) sur ces solutions. Les symétries infinies-dimensionnelles ont également été étudiées. D'une part, la correspondance entre les champs d'espace-temps de la théorie N=2 et le modèle sigma basé sur le groupe hyperbolique SU(2,1)^{++} est établie. D'autre part, on montre que la structure des solutions de brane BPS est bien encodée dans SU(2,1)^{+++}. Ces considérations argumentent le fait que la supergravité N=2 possèderait une structure algébrique décrite par le groupe de Kac-Moody Lorentzien SU(2,1)^{+++}.
37

Type II flux compactifications

Wrase, Timm Michael, 1978- 21 September 2012 (has links)
Orientifolds of type II string theory offer a promising toolkit for model builders, especially when one includes not only the usual fluxes from NSNS and RR field strengths, but also fluxes that are T-dual to the NSNS three-form flux. These additional ingredients can help stabilize moduli and lead to D-term contributions to the effective scalar potential. We describe in general how these fluxes appear as parameters of an effective N = 1 supergravity theory in four dimensions for type IIA and type IIB string theory. We also show how these fluxes arise from compactifications on six-dimensional spaces that can be described by toroidal fibers twisted over a toroidal base. This approach leads us to a more subtle treatment of the quantization of the general NSNS fluxes. We illustrate these phenomena with examples of certain orientifolds of T⁶/Z₄. / text
38

Non-supersymmetric holographic engineering and U-duality

Young, Stephen Christopher 19 November 2012 (has links)
In this Ph.D. thesis, we construct and study a number of new type IIB supergravity backgrounds that realize various flavored, finite temperature, and non-supersymmetric deformations of the resolved and deformed conifold geometries. We make heavy use of a U-duality solution generating procedure that allows us to begin with a modification of a family of solutions describing the backreaction of D5 branes wrapped on the S^2 of the resolved conifold, and generate new backgrounds related to the Klebanov-Strassler background. We first construct finite temperature backgrounds which describe a configuration of N_c D5 branes wrapped on the S^2 of the resolved conifold, in the presence of N_f flavor brane sources and their backreaction i.e. N_f/N_c ~ 1. In these solutions the dilaton does not blow up at infinity but stabilizes to a finite value. The U-duality procedure is then applied to these solutions to generate new ones with D5 and D3 charge. The resulting backgrounds are a non-extremal deformation of the resolved deformed conifold with D3 and D5 sources. It is tempting to interpret these solutions as gravity duals of finite temperature field theories exhibiting phenomena such as Seiberg dualities, Higgsing and confinement. However, a first necessary step in this direction is to investigate their stability. We study the specific heat of these new flavored backgrounds and find that they are thermodynamically unstable. Our results on the stability also apply to other non-extremal backgrounds with Klebanov-Strassler asymptotics found in the literature. In the second half of this thesis, we apply the U-duality procedure to generate another class of solutions which are zero temperature, non-supersymmetric deformations of the baryonic branch of Klebanov-Strassler. We interpret these in the dual field theory by the addition of a small gaugino mass. Using a combination of numerical and analytical methods, we construct the backgrounds explicitly, and calculate various observables of the field theory. / text
39

Supersymmetric Curvature Squared Invariants in Five and Six Dimensions

Ozkan, Mehmet 16 December 2013 (has links)
In this dissertation, we investigatethe supersymmetric completion of curvature squared invariants in five and six dimensionsas well as the construction of off-shell Poincar´e supergravities and their matter couplings. We use superconformal calculus in fiveand six dimensions, which are an off- shell formalisms. In fivedimensions,there are twoinequivalentWeyl multiplets: the standard Weyl multiplet and the dilaton Weyl multiplet.The main difference betweenthese twoWeyl multiplets is thatthe dilaton Weyl multipletcontains a graviphoton in its field content whereas the standard Weyl multiplet does not.A supergravity theory based on the standard Weyl multiplet requires coupling to an external vector multiplet. In five dimensions,we construct two new formulations for 2-derivative off-shell Poincar´e supergravity theories and present the internally gauged models. We also construct supersymmetric completions of all curvature squared terms in five dimensional supergravity with eight supercharges.Adopting the dilaton Weyl multiplet, we construct a Weyl squared invariant, the supersymmetric combination of Gauss-Bonnet combination and the Ricci scalar squared invariant as well as all vector multiplets coupled curvature squared invariants. Since the minimal off-shell supersymmetric Riemann tensor squared invariant has been obtained before, both the minimal off-shell and the vector multiplets coupled curvature squared invariants in the dilation Weyl multiplet are complete. We also constructedan off-shell Ricci scalar squared invariant utilizing the standard Weyl multiplet.The supersymmetric Ricci scalar squared in the standard Weyl multiplet is coupled to n number of vector multiplets by construction, and it deforms the very special geometry. We found that in the supersymmetric AdS5 vacuum, the very special geometry defined on the moduli space is modified in a simple way. We study the vacuum solutions with AdS2 × S3 and AdS3 × S2 structures. We also analyze the spectrum around a maximally supersymmetric Minkowski5, and study the magnetic string and electric black hole. Finally, we generalize our procedure for the construction of an off-shell Ricci scalar squared invariant in five dimensions to N = (1, 0), D = 6 supergravity.
40

Type II flux compactifications

Wrase, Timm Michael, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.

Page generated in 0.0465 seconds