91 |
Tailoring Surface Properties of Bio-Fibers via Atom Transfer Radical PolymerizationLindqvist, Josefina January 2007 (has links)
The potential use of renewable, bio-based polymers in high-technological applications has attracted great interest due to increased environmental concern. Cellulose is the most abundant biopolymer resource in the world, and it has great potential to be modified to suit new application areas. The development of controlled polymerization techniques, such as atom transfer radical polymerization (ATRP), has made it possible to graft well-defined polymers from cellulose surfaces. In this study, graft-modification of cellulose substrates by ATRP was explored as a tool for tailoring surface properties and for the fabrication of functional cellulose surfaces. Various native and regenerated cellulose substrates were successfully graft-modified to investigate the effect of surface morphology on the grafting reactions. It was found that significantly denser polymer brushes were grafted from the native than from the regenerated cellulose substrates, most likely due to differences in surface area. A method for detaching the grafted polymer from the substrate was developed, based on the selective cleavage of silyl ether bonds with tetrabutylammonium fluoride. The results from the performed kinetic study suggest that the surface-initiated polymerization of methyl methacrylate from cellulose proceeds faster than the concurrent solution polymerization at low monomer conversions, but slows down to match the kinetics of the solution polymerization at higher conversions. Superhydrophobic and self-cleaning bio-fiber surfaces were obtained by grafting of glycidyl methacrylate using a branched graft-on-graft architecture, followed by post-functionalization to obtain fluorinated polymer brushes. AFM analysis showed that the surface had a micro-nano-binary structure. It was also found that superhydrophobic surfaces could be achieved by post-functionalization with an alkyl chain, with no use of fluorine. Thermo-responsive cellulose surfaces have been prepared by graft-modification with the stimuli responsive polymer poly(N-isopropylacrylamide) (PNIPAAm). Brushes of poly(4-vinylpyridine) (P4VP) rendered a pH-responsive cellulose surface. Dual-responsive cellulose surfaces were achieved by grafting block-copolymers of PNIPAAm and P4VP. / QC 20100804
|
92 |
Effects of Superhydrophobic SiO2 Nano-particles on the Performance of PVDF Flat Sheet Membranes for Membrane DistillationEfome, Johnson Effoe January 2015 (has links)
Poly(vinylidene) fluoride (PVDF) nano-composite membranes were prepared. The dope solution contained varied concentrations of superhydrophobic SiO2 nano-particles. The fabricated flat sheet membranes were characterized extensively by SEM, FTIR, water contact angle, LEPw, surface roughness, pore size diameter and pore size distribution. The effect of the nano-particles on the membrane performance was then analysed. The nano-composite membranes showed increased surface pore diameter, elevated water contact angle measurements with lower LEPw when compared to the neat membrane. The 7 wt. % nano-composite membrane showed the greatest flux in a VMD process with 2.9 kg/m2.h flux achieved accounting to a 4 fold increase when compared to the neat membrane. Desalination test were carried out using a 35 g/L synthetic salt water and rejection >99.98% was obtained. The best performing nano-composite dope solution (7 wt. %) was then further treated for performance enhancement by increasing the water content to increase pore size and pore size distribution followed by coating with nano-fibres. The uncoated and coated flat sheets, were characterized by SEM, surface roughness, LEPw and CAw. Flux analysis showed that the increase in water content had little effects on the VMD flux. It also suggests that; the nano-fibre layer posed very little resistance to mass transfer. A comparison of VMD and DCMD was also done experimentally.
|
93 |
Hydrodynamic and Thermal Effects of Sub-critical Heating on Superhydrophobic Surfaces and MicrochannelsCowley, Adam M. 01 November 2017 (has links)
This dissertation focuses on the effects of heating on superhydrophobic (SHPo) surfaces. The work is divided into two main categories: heat transfer without mass transfer and heat transfer in conjunction with mass transfer. Numerical methods are used to explore the prior while experimental methods are utilized for the latter. The numerical work explores convective heat transfer in SHPo parallel plate microchannels and is separated into two stand-alone chapters that have been published archivally. The first considers surfaces with a rib/cavity structure and the second considers surfaces patterned with a square lattice of square posts. Laminar, fully developed, steady flow with constant fluid properties is considered where the tops of the ribs and posts are maintained at a constant heat flux boundary condition and the gas/liquid interfaces are assumed to be adiabatic. For both surface configurations the overall convective heat transfer is reduced. Results are presented in the form of average Nusselt number as well as apparent temperature jump length (thermal slip length). The heat transfer reduction is magnified by increasing cavity fraction, decreasing Peclet number, and decreasing channel size relative to the micro-structure spacing. Axial fluid conduction is found to be substantial at high Peclet numbers where it is classically neglected. The parameter regimes where prior analytical works found in the literature are valid are delineated. The experimental work is divided into two stand-alone chapters with one considering channel flow and the other a pool scenario. The channel work considers high aspect ratio microchannels with one heated SHPo wall. If water saturated with dissolved air is used, the air-filled cavities of SHPo surfaces act as nucleation sites for mass transfer. As the water heats it becomes supersaturated and air can effervesce onto the SHPo surface forming bubbles that align to the underlying micro-structure if the cavities are comprised of closed cells. The large bubbles increase drag in the channel and reduce heat transfer. Once the bubbles grow large enough, they are expelled from the channel and the nucleation and growth cycle begins again. The pool work considers submerged, heated SHPo surfaces such that the nucleation behavior can be explored in the absence of forced fluid flow. The surface is maintained at a constant temperature and a range of temperatures (40 - 90 °C) are explored. Similar nucleation behavior to that of the microchannels is observed, however, the bubbles are not expelled. Natural convection coefficients are computed. The surfaces with the greatest amount of nucleation show a significant reduction in convection coefficient, relative to a smooth hydrophilic surface, due to the insulating bubble layer.
|
94 |
Příprava a charakterizace vysoce hydrofobních povlaků na hořčíkové slitině AZ91 / Preparation and characterization of highly hydrophobic coatings on AZ 91 magnesium alloyŠomanová, Pavlína January 2021 (has links)
Magnesium and its alloys have many interesting properties and thanks to them it can be used in many applications (transport industry, medicine etc.). Disadvantage of these materials is their high corrosion rate. For this reason, there is an effort to achieve high corrosion resistance through different modifications of magnesium and its alloys. In recent years the superhydrophobization of the surface seem to be an attractive solution for this question. This type surface modification minimalize contact between the surface and water. In this diploma thesis the superhydrophobic surface was created on the magnesium alloy AZ91. The first step included pretreatment of AZ91 surface by etching in solution of SnCl2 or ZnCl2. Next step was superhydrophobization in the ethanolic solution of stearic acid. The surface morphology and elemental analysis of the superhydrophobic coating were explored by use of scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The adhesion properties of the coating on the AZ91 were analysed by means of scratching test. Contact and sliding angles were measured for superhydrophobic coatings. Electrochemical characterization of the coatings was determined using potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS). Finally, the analysis of composition and the functional groups was made using Fourier-transform infrared spectroscopy (FTIR) and the phase composition analysis was performed using X-ray diffraction (XRD). The results show that the coatings prepared by etching did not lead to good corrosion properties, even though the value of contact angle was about 150 °. The reduction of corrosion resistance could be caused by not obtaining required surface morphology or insufficient binding of stearic acid in the form of stearate to the sample surface.
|
95 |
Design of multifunctional materials with controlled wetting and adhesion propertiesChanda, Jagannath 24 March 2016 (has links)
Ice accretion on various surfaces can cause destructive effect of our lives, from cars, aircrafts, to infrastructure, power line, cooling and transportation systems. There are plenty of methods to overcome the icing problems including electrical, thermal and mechanical process to remove already accumulated ice on the surfaces and to reduce the risk of further operation. But all these process required substantial amount of energy and high cost of operation. To save the global energy and to improvement the safety issue in many infrastructure and transportation systems we have to introduce some passive anti-icing coating known as ice-phobic coating to reduce the ice-formation and ice adhesion onto the surface. Ice-phobic coatings mostly devoted to utilizing lotus-leaf-inspired superhydrophobic coatings. These surfaces show promising behavior due to the low contact area between the impacting water droplets and the surface.
In this present study we investigate systematically the influence of chemical composition and functionality as well as structure of surfaces on wetting properties and later on icing behavior of surfaces. Robust anti-icing coating has been prepared by using modified silica particles as a particles film. Polymer brushes were synthesized on flat, particle surfaces by using Surface initiated ATRP. We have also investigated the effect of anti-icing behavior on the surfaces by varying surface chemistry and textures by using different sizes of particles. This approach is based on the reducing ice accumulation on the surfaces by reducing contact angle hysteresis. This is achieved by introducing nano to micro structured rough surfaces with varying surface chemistry on different substrates.
Freezing and melting dynamics of water has been investigated on different surfaces by water vapour condensation in a high humidity (80%) condition ranging from super hydrophilic to super hydrophobic surfaces below the freezing point of water. Kinetics of frost formation and ice adhesion strength measurements were also performed for all samples. All these experiments were carried out in a custom humidity and temperature controlled chamber. We prepared a superhydrophobic surface by using Poly dimethyl siloxane (PDMS) modified fumed silica which display very low ice-adhesion strength almost 10 times lower than the unmodified surface. Also it has self-cleaning behavior after melting of ice since whole ice layer was folded out from the surface to remove the ice during melting. Systematic investigation of the effect of three parameters as surface energy, surface textures (structure, geometry and roughness) and mechanical properties of polymers (soft and stiff) on icing behavior has also been reported.
|
96 |
POLYMERIC MATERIALS FOR ENVIRONMENTAL APPLICATIONS IN THE OIL AND GAS INDUSTRYSilva, Italo Guimaraes Medeiros da 26 January 2021 (has links)
No description available.
|
97 |
Wetting properties of structured interfaces composed of surface-attached spherical nanoparticlesBhattarai, Bishal 20 December 2018 (has links)
No description available.
|
98 |
Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic SurfacesDaniello, Robert J. 01 January 2009 (has links) (PDF)
Periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide drag reduction in the laminar flow regime, have been demonstrated capable of reducing drag in the turbulent flow regime as well. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to skin friction drag reductions approaching 50%. At a given Reynolds number, drag reduction was found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results and theoretical predictions for the channel geometry considered. In turbulent flow, viscous sublayer thickness appears to be the relevant length scale as it approaches the scale of the superhydrophobic microfeatures; performance was seen to increase with further reduction of the viscous sublayer. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.
|
99 |
Carbon Nanotube Based Functional Superhydrophobic CoatingsSethi, Sunny 21 May 2010 (has links)
No description available.
|
100 |
Microscopic Surface Textures Created by Interfacial Flow InstabilitiesGu, Jing 01 August 2013 (has links)
In nature, microscopic surface textures impact useful function, such as the drag reduction of shark skin (Dean & Bhushan, 2010) and superhydrophobicity of the lotus leaf(Pan, Kota, Mabry, & Tuteja, 2013). In this study, we explore these phenomena by re-creating microscopic surface textures via the method of interfacial flow instability in drying polyvinylidene fluoride (PVDF) acetone solutions. In general, PVDF films can be made using either spin coating or electrospray deposition with various weight concentrations in acetone. In order to study the morphology of the porous structure of PVDF films, wet deposition samples were fabricated by spin coating or near-field electrospray. Possible theories are discussed and examined to explain the formation of these porous structures resulting in development of a well-controlled method to create porous PVDF films with various pore sizes and pore densities. All samples are characterized and found to exhibit superhydrophobicity and drag reduction. To connect porous PVDF film morphology to the established field of dry particle fabrication, PVDF particle synthesis by far-field electrospray is also reviewed and discussed. An established method to generate polymer particles of different morphologies in other polymers (Almeria-Diez, 2012) by electrospray drying is confirmed using PVDF as well. Due to the ability of scalable and re-configurable electrospray, the microscopic surface textures can be applied to areas of any size to reduce drag or impart water-repelling properties.
|
Page generated in 0.0506 seconds