• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 10
  • 7
  • 4
  • 3
  • 1
  • Tagged with
  • 133
  • 58
  • 38
  • 33
  • 31
  • 20
  • 19
  • 18
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Aligned and oriented polyaniline nanofibers: frabrication and applications

Chiou, Nan-Rong 21 September 2006 (has links)
No description available.
122

Investigations on Multiscale Fractal-textured Superhydrophobic and Solar Selective Coatings

Jain, Rahul 21 August 2017 (has links)
Functional coatings produced using scalable and cost-effective processes such as electrodeposition and etching lead to the creation of random roughness at multiple length scales on the surface. The first part of thesis work aims at developing a fundamental mathematical understanding of multiscale coatings by presenting a fractal model to describe wettability on such surfaces. These surfaces are described with a fractal asperity model based on the Weierstrass-Mandelbrot function. Using this description, a model is presented to evaluate the apparent contact angle in different wetting regimes. Experimental validation of the model predictions is presented on various hydrophobic and superhydrophobic surfaces generated on several materials under different processing conditions. Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been severely limited by their poor mechanical durability and longevity. Toward addressing this gap, the second and third parts of this thesis work present low cost, facile processes to fabricate superhydrophobic copper and zinc-based coatings via electrodeposition. Additionally, systematic studies are presented on coatings fabricated under different processing conditions to demonstrate excellent durability, mechanical and underwater stability, and corrosion resistance. The presented processes can be scaled to larger, durable coatings with controllable wettability for diverse applications. Apart from their use as superhydrophobic surfaces, the application of multiscale coatings in photo-thermal conversion systems as solar selective coatings is explored in the final part of this thesis. The effects of scale-independent fractal parameters of the coating surfaces and heat treatment are systematically explored with respect to their optical properties of absorptance, emittance, and figure of merit (FOM). / Master of Science
123

Influence of Chemical Coating on Droplet Impact Dynamics

Gupta, Rahul January 2016 (has links) (PDF)
Dynamic behavior of impacting water drops on superhydrophobic solid surfaces provides important details on the stability/durability of such solid surfaces. Multi-scale surface roughness combined with a layer of low energy chemical is an essential surface modification process followed to create superhydrophobic capabilities on solid surfaces. The present work aims at studying the effect of low energy surface coating on droplet impact dynamics by carrying out experiments of water drop impacts on rough solid surfaces with and without chemical modification. A group of six aluminium alloy (Al6061) surfaces (three pairs) are prepared. Roughness, characterized in terms mean surface roughness, Ra, is introduced to these metallic surfaces using sand-paper polishing, electric discharge machining (EDM), and chemical based surface etching process. Low energy surface layer is laid on the rough surfaces by coating NeverWet hydrophobic solution, octadecyl-trichloro-silane (OTS), and perfluorodecyltricholorosilane (FAS-17). The impact dynamics of water drops is analyzed by capturing high speed videos for a range of drop Weber number from 1 to 570 and the salient features of drop impact process on the coated rough surfaces are compared with the corresponding uncoated rough surfaces. A one-to-one comparison on the spreading, fingering, receding, and final equilibrium of impacting drops on the coated and uncoated target surfaces is presented. Upon coating NeverWet, the original surface features of the base aluminium surface are completely covered by the hydrophobic coating material resulting in a fresh top surface layer. The outcomes as well as the bounce-off characteristics of impacting water drops on the coated surface are comparable to those observed on lotus leaf. The surface morphology features of rough aluminium surfaces coated with OTS and FAS-17 are comparable to those of the corresponding uncoated surfaces. The quantitative measurements on primary spreading and maximum spread factor of impacting drops are largely unaffected by the presence of low energy chemical coating. The dominant effect of surface coating is seen on the receding of impacting drops and hence the final drop configuration. This behavior is more prominently seen on EDM fabricated rough surface (larger Ra) combined with OTS coating than that on etching based rough surface (smaller Ra) combined with FAS-17 coating highlighting the dependence of coating effect with roughness features.
124

Toward Anti-icing and De-icing Surfaces : Effects of Surface Topography and Temperature

Heydari, Golrokh January 2016 (has links)
Icing severely affects society, especially in the Nordic countries. Iceaccumulation can result in critical performance problems and safetyconcerns for instance in road, air and sea transportation, transmissionlines, marine and offshore structures, wind turbines and heat exchangers.Present active ice-combating approaches possess environmental,efficiency and cost drawbacks. Thus, fabricating icephobic surfaces orcoatings impeding ice formation (anti-icing), but facilitating ice removal(de-icing) is desired. However, different conditions in the environmentduring ice formation and growth add to the complexity of the problem.An icephobic surface that works for a certain application might not be agood candidate for another. These surfaces and the challenges are infocus in this thesis.Wetting properties are important for ice formation on surfaces fromthe liquid phase (often supercooled water), where the water repellency ofthe surfaces could enhance their anti-icing effect. Considering this,different hydrophobic and superhydrophobic surfaces with differentchemistry, morphology and roughness scale were prepared. Since anyinduced wetting state hysteresis on hydrophobic surfaces could influencetheir performance, the wetting stability was investigated. In particulardynamic wetting studies of the hydrophobic surfaces revealed whatsurface characteristics benefit a stable wetting performance. Further, theeffect of temperature, particularly sub-zero temperatures, on the wettingstate of flat and nanostructured hydrophobic surfaces was investigated.This was complemented with studies of the wetting stability of sessilewater droplets on flat to micro- and multi-scale (micro-nano) roughhydrophobic samples in a freeze-thaw cycle. To be consistent with mostapplications, all temperature-controlled experiments were performed inan environmental condition facilitating frost formation. Further, antiicingproperties of hydrophobic surfaces with different topography butsimilar chemistry were studied by freezing delay measurements.A dynamic wetting study using hydrophobic samples with similarchemistry but different topography revealed that multi-scale roughnesscould benefit the wetting stability. However, when these surfaces areutilized at low temperatures the wetting hysteresis observed during acooling/heating cycle is significant. Such a temperature-inducedhysteresis is also significant on superhydrophobic surfaces. I attributethis to condensation followed by frost formation facilitating spreading of  the supercooled water droplet. The freezing delay measurementsdemonstrate no significant effect of surface topography on anti-icingproperties of hydrophobic surfaces, however the flat surfaces showed thelongest delay. These findings are in agreement with heterogeneous icenucleation theory, suggesting preferential ice nucleation in concave sites,provided they are wetted.In the second part of this thesis, I consider the findings from theprevious part illustrating the limitations of (super)hydrophobic surfaces.The de-icing properties of hydrophilic surfaces with a hydration waterlayer, hypothesized to lubricate the interface with ice, were studied. Heretemperature-controlled shear ice adhesion measurements, down to -25oC, were performed on an adsorbed layer of a polymer, either bottle-brushstructured poly(ethylene oxide) or linear poly(ethylene oxide). The iceadhesion strength was reduced significantly on the bottle-brushstructured polymer layer, specifically at temperatures above -15 oC,whereas less adhesion reduction was observed on the layer formed by thelinear polymer. These findings are consistent with differential scanningcalorimetry (DSC) data, demonstrating that the hydration water, boundto the bottle-brush structured polymer, is in the liquid state at thetemperatures where de-icing benefit is observed. Further, continuingwith the hypothesis of the advantage of surfaces with a natural lubricantlayer for de-icing targets, I studied shear ice adhesion on the molecularlyflat basal plane of hydrophilic mica down to -35 oC. Interestingly, ultralowice adhesion strength was measured on this surface. I relate this to theproposed distinct structure of the first ice-like but fluid water layer onmica, with no free OH groups, followed by more bulk liquid-like layers.This combined with the molecularly smooth nature of mica results in aperfect plane for ice sliding. / Isbildning har en stark inverkan på samhället, speciellt i de nordiskaländerna. Isuppbyggnad kan resultera i kritiska prestandaproblem ochsäkerhetsrisker inom t.ex. väg-, luft-, och sjötransport, kraftledningar,marina- och offshorestrukturer, vindkraftverk och värmeväxlare.Nuvarande aktiva isbekämpningsmetoder uppvisar brister i avseende påmiljö, effektivitet och kostnad. Det finns därmed ett behov av attframställa ytor eller ytbeläggningar som förhindrar isbildning (antiisning)eller underlättar borttagandet av redan bildad is (avisning). Dockkompliceras problemet av de många olika förhållanden under vilka is kanbildas. En beläggning som fungerar för en viss tillämpning behöver intenödvändigtvis vara en bra kandidat för en annan. Dessa ytor ochutmaningar relaterade till dem är i fokus i denna avhandling.Vätningsegenskaper är viktiga för isbildning på ytor från vätskefas(ofta underkylt vatten), och det har visats att vattenavstötande ytor i vissasammanhang kan motverka isbildning. Med detta i åtanke framställdesolika hydrofoba och superhydrofoba ytor, med varierande kemi,morfologi och ytråhet. Eftersom en förändring i de hydrofoba ytornasvätningsegenskaper kan påverka deras funktion studerades vätningsstabilitetenför dessa ytor. I synnerhet dynamiska vätningsstudier av dehydrofoba ytorna avslöjade vilka ytegenskaper som är fördelaktiga förvätningsstabiliteten. Vidare studerades hur temperaturen, särskilt undernoll grader, påverkar vätningstillståndet på släta och nanostruktureradehydrofoba ytor. Arbetet kompletterades med studier av vätningsstabilitetenför vattendroppar på släta samt mikro- och multistrukturerade(mikro-nano) hydrofoba ytor under flera frysningsupptiningscykler.För att vara i linje med de flesta tillämpningar, utfördesalla temperaturkontrollerade mätningar i en miljö där frost kunde bildaspå ytorna. Anti-isegenskaperna hos de hydrofoba ytorna med varierandetopografi men samma kemi studerades vidare genom att studera hur långtid det dröjde innan en vattendroppe på ytan fryste vid en visstemperatur.De dynamiska vätningsstudierna på hydrofoba ytor med samma kemimen olika topografi avslöjade att en ytråhet på flera längdskalor kan haen positiv inverkan på vätningsstabiliteten. När dessa ytor är exponeradeför låga temperaturer är dock vätningshysteresen under en nedkylnings-/uppvärmnings-cykel significant. Den temperatur-inducerade hysteresenär också betydande för superhydrofoba ytor. Detta tillskriver jag  kondensation på ytan som följs av frostbildning, vilket i sin tur möjliggörspridning av den underkylda vattendroppen på ytan. Mätning avfördröjningen i frysningsförloppet påvisade ingen betydande effekt avyttopografin för hydrofoba ytor, men släta hydrofoba ytor uppvisade denlängsta fördröjningen. Dessa resultat är i överensstämmelse med rådandeheterogen iskärnbildningsteori, som visar på fördelaktig iskärnbildningpå konkava delar av ytan, förutsatt att dessa väts.I den andra delen av avhandlingen utnyttjar jag observationerna frånden första delen vilka illustrerade begränsningarna för superhydrofobaytor, och söker en annan lösning. Avisningsegenskaper för hydrofilastarkt hydratiserade ytor studerades, med hypotesen att hydratiseringkan smörja gränsskiktet med is. Temperatur-kontrolleradeisadhesionsmätningar ned till -25 °C utfördes på adsorberade skikt av enpolymer med många sidokedjor av polyetylenoxid (”bottle-brush”), såvälsom på ett skikt av linjär polyetylenoxid. Isadhesionen blev kraftigtreducerad på ”bottle-brush”-polymeren, speciellt vid temperaturer högreän -15°C. Däremot kunde knappast ingen minskad isadhesion observerasför den linjära polymeren. Dessa observationer överensstämmer meddifferentialskanningskalorimetri (DSC) data, som visar att dethydratiserade vattenskiktet, vilket är bundet till ”bottle-brush”-polymeren, är i vätskeform vid de temperaturer där avisningsfördelar ärobserverade. För att vidare undersöka hypotesen att det vore fördelaktigtmed ett naturligt smörjande skikt på ytan för att uppnå godaavisningsegenskaper, utförde jag isadhesionsmätningar på molekylärtsläta glimmerytor ner till -35 °C. Intressant nog uppmättes extremt lågisadhesion på denna yta. Detta relaterar jag till den föreslagna utprägladehydratiseringsstrukturen, bestående av ett första is-liknande vattenskiktutan fria OH-grupper, följt av ett mer bulkliknande skikt. Detta ikombination med den molekylärt släta naturen hos glimmer resulterar iett perfekt plan för isen att glida på. / <p>QC 20160504</p> / TopNano
125

Phénomènes interfaciaux dans la manipulation des gouttes et des bulles / Interfacial phenomena involved in the manipulation of drops and bubbles

Jiang, Xiaofeng 14 November 2017 (has links)
Les phénomènes interfaciaux impliqués dans les écoulements polyphasiques existent dans de nombreux procédés industriels. Des gouttes et des bulles sont des éléments typiques pour comprendre les phénomènes interfaciaux. Ainsi, cette thèse étudie les gouttes (bulles) impliquées dans la manipulation d’une interface, y compris la rupture de l'interface, le mouvement d’une goutte sur une surface superhydrophobe et le contact sur un support solide à l’aide d’un système d'acquisition pour des signaux électriques. Dans la première partie, une caméra rapide est utilisée pour étudier la dynamique de pincement des fluides homogènes et des ferrrofluides hétérogènes à travers des systèmes confinés et non-confinés liquide-liquide ou liquide-gaz. L'effet de compétition entre les différentes forces telles que la poussée d’Archimède, la force magnétique, la gravité et la tension interfaciale sur la rupture finale d’un fluide interne dans un environnement fluide externe est démontré et quantifié. La deuxième partie est consacrée à la manipulation d’une goutte aqueuse à l’aide d’une interface superhydrophobe sous deux angles distincts : saut d’obstacle de la goutte sur une surface solide revêtue d’une couche superhydrophobe ; déshabillement d’une goutte enveloppée de particules superhydrophobes dite "marbre liquide" sur un film huileux. Le comportement dynamique du saut d’obstacle et du déshabillement des gouttes est quantifié et comparé dans des conditions opératoires très différentes telles que la viscosité, la tension interfaciale, la géométrie d’obstacle, etc. La troisième partie est dévolue au contact d’une goutte sur un support solide: contact initial, étalement, et pincement final des fluides tant newtoniens que non newtoniens, grâce à une méthodologie combinant la caméra rapide et un système d'acquisition ultra-rapide d’un signal électrique / The interfacial phenomena in multiphase flows widely exist in numerous industrial processes. Drops and bubbles are typical models to investigate these interfacial phenomena. Thus this thesis investigates the drop (bubble) involved interface manipulation, including the breakup of interface, drop’s motion on superhydrophobic surface and Dripping-on-Substrate with an acquisition system of electric signals. In the first part, the pinch-off dynamics of homogenous fluids and heterogeneous ferrrofluids, unconfined liquid-liquid (liquid-gas) or confined liquid-liquid systems was investigated by a high-speed camera. The effect of buoyancy, magnetic force, gravity and interface tension between internal and external fluids on the final pinch-off was demonstrated and quantified. The second part focuses on the drop manipulation on superhydrophobic interface through two distinct approaches: superhydrophobic coating on a substrate and superhydrophobic particles enveloping a liquid drop to form “liquid marble”. The hurdling behavior of liquid drops on superhydrophobic obstacles and undressing dynamics of liquid marbles on oil films were discussed and the slope motion of liquid drops and liquid marbles were then compared. The third part concentrates on the Dripping-on- Substrate behavior: initial contact and spreading on a solid surface, final pinch-off of Newtonian fluids and filament thinning of non-Newtonian fluids, through a methodology combining the high-speed camera and ultra-high-speed acquisition device of an electric signal
126

Fabrication of multifunctional aluminum surfaces using laser-based texturing methods

Milles, Stephan 18 August 2021 (has links)
Nature-inspired surfaces provide an endless potential for innovations and exploitations in material science and engineering for a broad range of applications. Particularly, significant progress has been achieved in the fields of ice formation and wetting phenomena on metallic surfaces. One of the most relevant wetting states is superhydrophobicity, which is characterized by the complete repellency of water droplets upon impinging on a surface. A superhydrophobic surface can be accompanied by additional functions such as anti- icing, corrosion-resistance or self-cleaning. A particularly attractive material to implement functional surfaces is aluminum, due to its outstanding mechanical properties such as lightweight and high strength combined with an excellent electrical conductivity and affordable price. Functionalized aluminum surfaces can further increase the added value of technical aluminum products which are used in the automotive, aerospace and life science industry among others. A promising strategy to achieve multifunctionalities is by fabricating micrometer and submicrometer features on the material’s surface. Thus, surface texturing of aluminum components is an extremely relevant topic in science and engineering which affects all facets of our lives. Until now, micropatterned aluminum surfaces, that combine water- repellent, self-cleaning and icephobic properties, have not yet been completely explored. The present doctoral thesis focuses on structuring aluminum substrates to fabricate multifunctional surfaces with superhydrophobic, self-cleaning and anti-icing properties. To accomplish this goal, scanner-based direct laser writing (DLW) and two- and four-beam direct laser interference patterning (DLIP) are applied to pattern micrometer and sub- micrometer features on aluminum. They are employed separately to fabricate single-scale textures, as well as in combination in order to obtain multi-scale geometries and complex patterns. The laser texturing parameters are optimized to maximize the addressed functionalities and their influence on the microstructure are studied. In order to explain the wetting and freezing behavior of the functional surfaces, numerical heat transfer simulation models are applied. The most promising textures are then selected and tested under realistic icing conditions simulating the freezing behavior of water droplets on aircraft parts during flight. Moreover, a new method to characterize the self-cleaning efficiency of laser-patterned aluminum is developed. The textured aluminum surfaces attained a water-repellent functionality with a static water contact angle of up to 163° and a sliding angle of 12° without chemical post-processing. This functionality permitted a self-cleaning property where the DLIP and DLW+DLIP structures provided a maximum self-cleaning efficiency with remaining contamination as low as 1 %. The ice-repellent characterization at a temperature of -20°C revealed that in all investigated laser-structured surfaces the freezing time of 8 μl droplets increased up to three times compared to an unstructured reference. Moreover, it was demonstrated, that optimized surface textures led to a reduction of the ice adhesion strength by up to 90 %.:Selbstständigkeitserklärung Kurzfassung Abstract Acknowledgements Table of content List of abbreviations and symbols 1 Motivation 2 Theoretical principles and definitions 3 State of the art 4 Materials and methods 5 Results and discussion 6 Conclusions 7 Outlook Literature Curriculum vitae of the author List of publications / Von der Natur inspirierte Oberflächen bergen ein endloses Potential für Innovationen auf den Gebieten der Materialwissenschaft und demonstrieren ein breites Anwendungsfeld. Insbesondere in den Bereichen der Eisbildung und der Benetzungsphänomene auf Metalloberflächen wurde ein bedeutender Fortschritt erzielt. Einer der relevantesten Benetzungszustände ist der der Superhydrophobizität, welcher sich durch die vollständige Abweisung von Wassertropfen auszeichnet, sobald diese auf eine Oberfläche auftreffen. Eine superhydrophobe Oberfläche kann von zusätzlichen Funktionen wie Vereisungsschutz, Korrosionsbeständigkeit oder Selbstreinigung begleitet werden. Dabei ist besonders der Werkstoff Aluminium zur Realisierung funktionaler Oberflächen attraktiv, aufgrund seiner mechanischen Eigenschaften wie etwa ein geringes Gewicht und eine hohe Festigkeit bei gleichzeitig hervorragender elektrischer Leitfähigkeit ergänzt durch einen günstigen Preis. Funktionalisierte Aluminiumoberflächen können die Wertschöpfung von technischen Aluminiumprodukten deutlich erhöhen. Diese werden u.a. im Automobilsektor, in der Luft- und Raumfahrtindustrie oder im Life-Science-Bereich eingesetzt. Ein vielversprechender Ansatz zur Realisierung multifunktionaler Eigenschaften basiert auf der Herstellung von Mikrometer- und Submikrometer-Strukturen auf der Oberfläche. Daher stellt die Texturierung von Aluminiumkomponenten ein äußerst relevantes Thema in der Wissenschaft und Technik dar, da sie sämtliche Facetten unseres täglichen Lebens tangiert. Bis heute sind laser-strukturierte Aluminiumoberflächen, die wasserabweisende, selbstreinigende und eisabweisende Eigenschaften vereinen, noch nicht vollständig erforscht. Die zugrunde liegende Dissertation thematisiert die Strukturierung von Aluminiumsubstraten zur Herstellung multifunktionaler Oberflächen mit superhydrophoben, selbstreinigenden und vereisungsmindernden Eigenschaften. Dafür, werden direktes Laserschreiben (engl. Direct laser writing, DLW) sowie die direkte Laserinterferenzstrukturierung (engl. Direct laser interference patternin, DLIP) auf Aluminium angewendet. Die Verfahren werden sowohl separat zur Herstellung von einskaligen Texturen als auch in Kombination eingesetzt, um mehrskalige komplexe Muster zu fertigen. Die Strukturierungsparameter werden zur Maximierung der erwähnten Eigenschaften hin optimiert, und ihr Einfluß auf die Mikrostruktur wird untersucht. Um das Benetzungs- und Vereisungsverhalten der funktionalisierten Oberflächen zu erklären, werden numerische Simulationsmodelle eingesetzt. Die vielversprechendsten Texturen werden unter realistischen Vereisungsbedingungen getestet, welche das Gefrierverhalten von Wassertropfen auf Flugzeugbauteilen während des Fluges simulieren. Darüber hinaus wird eine neue Methode zur Charakterisierung der Selbstreinigungseffizienz von laserstrukturiertem Aluminium entwickelt und angewendet. Die texturierten Aluminiumoberflächen erhielten ohne chemische Nachbearbeitung eine wasserabweisende Funktionalität mit einem statischen Wasserkontaktwinkel von bis zu 163° und einem Gleitwinkel von 12°. Diese Funktionalität ermöglichte eine Selbstreinigungseigenschaft, bei der die DLIP- und DLW+DLIP-Strukturen die höchste Effizienz mit einer Restverunreinigung von bis zu 1 % erzielten. Die eisabweisende Charakterisierung bei einer Temperatur von -20°C offenbarte, dass bei allen untersuchten laserstrukturierten Oberflächen die Vereisungszeit von 8 μl Wassertropfen bis um das Dreifache anstieg, im Vergleich zur unstrukturierten Referenz. Darüber hinaus konnte demonstriert werden, dass optimierte Oberflächentexturen zu einer Reduzierung der Eis- Adhäsionskraft um bis zu 90 % führten.:Selbstständigkeitserklärung Kurzfassung Abstract Acknowledgements Table of content List of abbreviations and symbols 1 Motivation 2 Theoretical principles and definitions 3 State of the art 4 Materials and methods 5 Results and discussion 6 Conclusions 7 Outlook Literature Curriculum vitae of the author List of publications
127

Fundamentals of Liquid Interactions with Nano/Micro Engineered Surfaces at Low Temperatures

Raiyan, Asif 28 August 2019 (has links)
No description available.
128

PIV Measurements of Turbulent Flow in a Rectangular Channel over Superhydrophobic Surfaces with Riblets

Perkins, Richard Mark 01 September 2014 (has links) (PDF)
In this thesis I investigate characteristics of turbulent flow in a channel where one of the walls has riblets, superhydrophobic microribs, or a hybrid surface with traditional riblets built on a superhydrophobic microrib surface. PIV measurements are used to find the velocity profile, the turbulent statistics, and shear stress profile in the rectangular channel with one wall having a structured test surface. Both riblets and superhydrophobic surfaces can each provide a reduction in the wall shear stress in a turbulent channel flow. Characterizing the features of the flow using particle image velocimetry (PIV) is the focus of this research. Superhydrophobicity results from the combination of a hydrophobic coating applied to a surface with microrib structures, resulting in a very low surface energy, such that the fluid does not penetrate in between the structures. The micro-rib structures are aligned in the streamwise flow direction. The riblets are larger than the micro-rib structure by an order of magnitude and protrude into the flow. All the test surfaces were produced on silicon wafers using photolithographic techniques. Pressure in the channel is maintained below the Laplace pressure for all testing, creating sustainable air pockets between the microribs. Velocity profiles, turbulent statistics, shear stress profiles, and friction factors are presented. Measurements were acquired for Reynolds numbers ranging from 4.5x10^3 to 2.0x10^4. Modest drag reductions were observed for the riblet surfaces. Substantial drag increase occurred over the superhydrophobic surfaces. The hybrid surfaces showed the greatest drag reduction. Turbulence production was strongly reduced during riblet and hybrid tests.
129

ENERGY EFFICIENCY AND FLUX ENHANCEMENT IN MEMBRANE DISTILLATION SYSTEM USING NOVEL CONDENSING SURFACES

Yashwant S Yogi (9525965) 16 December 2020 (has links)
<p>The water crisis is increasing with every passing day due to climate change and increase in demand. Different desalination methods have been developed over the years to overcome this shortage of water. Reverse Osmosis is the most widely used desalination technology, but cannot treat many fouling-prone and high salinity water sources. A new desalination technology, Membrane distillation (MD), has the potential to purify wastewater as well as highly saline water up to a very high purity. It is a thermal energy-driven desalination method, which can operate on low temperature waste heat sources from industries, powerplants and renewable sources like solar power. Among the different configurations of MD, Air Gap Membrane Distillation (AGMD) is the most versatile and flexible. However, the issue that all MD technology, including AGMD face, is the low energy efficiency. Different sections of AGMD system have been modified and improved over the years through consistent research to improve its energy efficiency, but one section that is still new and unexplored, and has a very high potential to improve the energy efficiency of AGMD, is the ‘air gap’.</p><p> </p><p> </p><p>The aim of this research is to tap into the potential of the air gap and increase the energy efficiency of the AGMD system. It is known that decreasing the air gap thickness improves the energy efficiency parameter called Gained output ratio (GOR) to a great extent, especially at very small air gap thickness. The minimum gap thickness that maximizes the performance is smaller than the current gap thicknesses used. But it is difficult to attain such smaller air gap thickness (< 2mm) without the constant risk of flooding. Flooding can be prevented, and smaller air gap thickness can be achieved if instead of film wise condensation on the condensing surface, a different condensation flow regime is formed. This study tests different novel condensing surfaces like Slippery liquid infused porous surfaces (SLIPS) and Superhydrophobic surfaces (fabricated with different methods) inside the AGMD system with a goal of attaining smaller air gap thickness and improve the performance of AGMD system for the first time. The performance of these surfaces is compared with plain copper surface as well as with each other. Finally, numerical models are developed using the experimental data for these surfaces.</p><div><div><div> </div> </div> </div>
130

The Effect of Water on the Gecko Adhesive System

Stark, Alyssa Yeager 15 September 2014 (has links)
No description available.

Page generated in 0.0637 seconds