• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fine Jetting from Drops Impacting on a Superhydrophobic Surface

Alhazmi, Mohammad A. 10 1900 (has links)
In this study, the associated dynamic of water droplets at low impact velocity on the Superhydrophobic surface have been investigated. The experiment is conducted on superhydrophobic surface (SH), (Contact Angel > 1500) while varying the impact velocity (V0). When the drop hits the surface, large oscillation starts, and the capillary waves travel up to the upper of the drop where a cylindrical cavity can be formed inside the drop. The cavity closes up in a self-similar way until collapse, followed by a violent singular jet which can reach up to 35 m/s. The study showed that during drop receding, the cavity can collapse in different scenarios based on the impact velocity and the surface wettability. More importantly, the collapse is observed for the first time at very high-speed video, up to 5 million fps. Furthermore, we correct the optical distortion of the cavity due to the curvature of the drop surface. This study classifies all of the 5 encountered behaviors of the cavity collapse. The jet formation and speed are strongly dependent on the specific cavity configuration. Very fast jetting behavior is observed when the collapse is pinch-off singularity which reaches zero value in the middle of the drop. Other behaviors of the collapse such the unsymmetrical closing of the cavity or bubble entrapment is discussed. The optical distortion factor is calculated through 3 different approaches. The first one is an experimental calibration technique where a small cylinder is inserted into the drop. While the other two approaches are indirect implantations of theoretical models presented in the literature to fit the instantaneous geometrical shape of the cavity inside the drop. The distortion factor (DF) gives in all cases a similar value. Therefore, the averaged distortion value is calculated, and it is a magnification of 33% increase of the actual size. The experiment results of the cavity radius are compared with power-laws and the modified Rayleigh-Plesset equation for free cylindrical flow and good agreement is shown.
2

Aircraft Anti-Icing Analysis: Water Droplet Dynamics Under High-Frequency Atomization and Superhydrophobic Effects

Thomas Fernandez, Kevin 21 March 2025 (has links)
Structural icing is a significant engineering challenge that has prompted extensive research into thermal and mechanical preventive measures. Common solutions involve the spraying of de-icing chemicals and high-power consumption heating systems for larger aircraft that add to the weight. Still, complexities arise from water droplets freezing at supercooled levels. A novel approach uses the structure's vibration to induce atomization, a proposed active anti-icing method using high-frequency Piezoelectric Transducer (PZT) vibration and combines it with the passive method of surface roughness variation by fabricating superhydrophobic surfaces. The study analyzes the droplet impact at 3 speeds. The impact is recorded with high-speed imaging using selected resonant frequencies (between 6 kHz and 25.6 kHz) to determine the optimal range for atomization. The study of the active method of atomization involved adjusting the frequency applied (as single and a sweep of frequencies) to the transducer material attached to an aluminum flat plate at a constant AC voltage supply, and variation of droplet velocity parameters. The best actuators are selected and determined through the analysis of frequency response and the magnitudes of the amplitude of vibration that are generated. The effect of single and sweep frequencies on the droplet dynamics is studied by analyzing 3 quantities: the Spread factor, the Volume ejected per ms (Vatomized), and the total energy (Eatomized) of the atomized droplets. The combination of the three helps to determine three key outcomes: The dynamics of the droplet, the change in dynamics due to vibrations, and the most effective atomization. It is observed that during atomization, Wenzel state (Hydrophilic) pining becomes more prevalent in the droplet as opposed to a non-vibrating static surface. Vibration also promotes spreading, meaning thinner droplet lamella (droplet height on the surface) and more surface area contact, thereby higher wetting. Furthermore, the more it spreads, the larger the volume of water is ejected. It was observed that the total energy (sum of Kinetic and potential energies) of ejected droplets have an inverse relation with the increase in Reynolds number. As the droplet speed increases in Re from ≈ 548 to ≈4797, the Eatomized reduces. Most notably, due to pinning, suggesting an increase in surface energy that promotes hydrophilic behavior and also the higher energy required to eject a droplet from a wider cross-section area (as the spreading increases with increase in Re). This research examines droplet interaction using parameters from both single-frequency and swept-frequency atomization, including the spread factor, Vatomized and Eatomized, to study droplet interaction. Here, swept frequencies exhibited less spatial dependency on droplet deposition while maintaining atomization rates, volumes, and energy levels comparable to those of single frequencies. Additionally, it explores the effects of combining atomization with a superhydrophobic surface, further improving the anti-icing characteristics. The study also establishes protocols for Abaqus FEA to simulate the frequency response of a PZT attached to a flat plate and outlines the design and construction of a supercooling chamber. / Master of Science / Aircraft icing, a major engineering obstacle to economic and safe transportation, has promoted in-depth research into thermal and mechanical preventive measures. General solutions involve spraying chemicals and high-power consumption heating systems for large aircraft and minimum measures for small aircraft, but the challenge resides in water droplets freezing at supercooled levels, leading to increased weight, drag, and de-icing power requirements. A novel approach is attempted using high-frequency Piezoelectric Transducer (PZT) atomization in combination with the fabricated superhydrophobic surface to tackle structural icing while also exploring the effect of surface roughness. The study spans various drop impact heights (∆d) and chosen resonant frequencies (6 kHz to 25.6 kHz) to determine the optimal range. Atomization creates smaller easily broken droplets, with a timescale similar to and smaller than ice nucleation, making it an effective anti-ice and or de-ice method. The experimental methodology involves adjusting frequency and droplet velocity to draw relevant effectiveness parameters as volume ejected per ms (Vatomized) and total atomization energy (Eatomized) using an aluminum substrate. The most effective actuators are selected and determined through the analysis of frequency response, where the range of frequencies and magnitude of their amplitudes allow selections that produce the best atomization. The use of mechanical vibrations to expel liquid more effectively addresses challenges faced with earlier larger PZTs that consumed greater power and significant voltage amplification. Single and sweep frequencies' effect on the droplet dynamics are studied in 3 parameters: the droplet Spread factor, the Vatomized, and the Eatomized. Vatomized is approximated from the rate of number of droplets ejected per ms (Ratomized) using ImageJ, the Eatomized is estimated using Track Mate, also in ImageJ, to detect and track the atomized droplets based on a search radius of 0.2 mm and the advanced Kalman filter applied. The combination of the 3 items helps achieve 3 key objectives: the dynamics of the droplet, the change in dynamics due to atomization, and the most effective method. The droplet dynamic is studied through the Wenzel/Cassie-Baxter state and the spreading of the droplet over the substrate. It is observed that the Atomizations induce more of a Wenzel state (hydrophilic) pining as opposed to a static surface. It promotes spreading, meaning the droplet has more surface area contact with the substrate, and the pining effect increases, therefore suggesting an increase in surface area energy. The localized effects of the vibration amplitude can help in both anti-icing and de-icing as observed through atomized these atomized droplets carry as they move away. As the droplet Re increases, the energy of the atomized droplet decreases. The total energy (Eatomized) reduces as a result of an increase in contact area and pining (hydrophilic nature) due to increased attraction of fluid particles to the substrate surface. Additionally, sub-objectives such as the drawbacks in current mathematical equations on atomization, the construction of a supercooled chamber, and the basis for finite element method analysis of a PZT attached to the aluminum substrate using ABAQUS, are discussed.
3

Design of multifunctional materials with controlled wetting and adhesion properties

Chanda, Jagannath 29 March 2016 (has links) (PDF)
Ice accretion on various surfaces can cause destructive effect of our lives, from cars, aircrafts, to infrastructure, power line, cooling and transportation systems. There are plenty of methods to overcome the icing problems including electrical, thermal and mechanical process to remove already accumulated ice on the surfaces and to reduce the risk of further operation. But all these process required substantial amount of energy and high cost of operation. To save the global energy and to improvement the safety issue in many infrastructure and transportation systems we have to introduce some passive anti-icing coating known as ice-phobic coating to reduce the ice-formation and ice adhesion onto the surface. Ice-phobic coatings mostly devoted to utilizing lotus-leaf-inspired superhydrophobic coatings. These surfaces show promising behavior due to the low contact area between the impacting water droplets and the surface. In this present study we investigate systematically the influence of chemical composition and functionality as well as structure of surfaces on wetting properties and later on icing behavior of surfaces. Robust anti-icing coating has been prepared by using modified silica particles as a particles film. Polymer brushes were synthesized on flat, particle surfaces by using Surface initiated ATRP. We have also investigated the effect of anti-icing behavior on the surfaces by varying surface chemistry and textures by using different sizes of particles. This approach is based on the reducing ice accumulation on the surfaces by reducing contact angle hysteresis. This is achieved by introducing nano to micro structured rough surfaces with varying surface chemistry on different substrates. Freezing and melting dynamics of water has been investigated on different surfaces by water vapour condensation in a high humidity (80%) condition ranging from super hydrophilic to super hydrophobic surfaces below the freezing point of water. Kinetics of frost formation and ice adhesion strength measurements were also performed for all samples. All these experiments were carried out in a custom humidity and temperature controlled chamber. We prepared a superhydrophobic surface by using Poly dimethyl siloxane (PDMS) modified fumed silica which display very low ice-adhesion strength almost 10 times lower than the unmodified surface. Also it has self-cleaning behavior after melting of ice since whole ice layer was folded out from the surface to remove the ice during melting. Systematic investigation of the effect of three parameters as surface energy, surface textures (structure, geometry and roughness) and mechanical properties of polymers (soft and stiff) on icing behavior has also been reported.
4

Novel Sputtered Stationary Phases for Solid Phase Microextraction, and Other Coatings and Materials for Surface Applications

Diwan, Anubhav 01 March 2016 (has links)
The primary focus of my work has been to prepare new solid adsorbents for solid phase microextraction (SPME) via sputtering of silicon. The orientation of the silica substrates/fibers and the sputtering pressure induced the formation of porous and columnar structures. Sputtering was performed for different times to yield fibers with different thicknesses. Piranha treatment of the surface increased the concentration of silanol groups, which underwent condensation with vapor deposited octadecyldimethylmonomethoxy silane to incorporate octadecyl chains onto the fiber surfaces. Silanized, sputtered fibers were preconditioned for 3 h at 320 °C to remove the unreacted chains. Comparison of the extraction efficiencies of 1.0 and 2.0 µm sputtered, silanized fibers with a commercial fiber (7 µm PDMS) for a series of analyte mixtures, which included alkanes, alcohols, aldehydes, esters, and amines, was demonstrated. The silanized, sputtered fiber performed better than the commercial fiber in extraction of most of the compounds. These fibers demonstrated long life as no degradation was seen even after 300 extractions. Carry-over between runs was not observed. The repeatability of the sputtered fibers was similar to commercial ones. The extraction of more than 50 compounds from a real world botanical sample using the 2.0 µm sputtered, silanized fiber was also demonstrated. In my second project, a facile method for the preparation of superhydrophobic surfaces (SHS) on glass and silicon surfaces was developed. A two-tier topography (needed for an SHS) was created in 60 min by the aggregation of nanosilica during in situ urea-formaldehyde polymerization. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated rough topography. Vapor deposition of a low surface energy silane imparted hydrophobicity, which was confirmed by the presence of an F 1s signal in X-ray photoelectron spectroscopy (XPS). The prepared surfaces exhibited water contact angles (WCA) of greater than 150 °C with very low sliding angles. In my third project, a multilayer assembly of nitrilotris(methylene)triphosphonic acid, a corrosion inhibitor, and zirconium was constructed on alumina at room temperature. Attempts to prepare a layer-by-layer assembly at higher temperature (70 °C) was unsuccessful due to etching of the alumina surface. A suite of analytical techniques, XPS, AFM, time-of-flight secondary ion mass spectrometry, and spectroscopic ellipsometry was used to characterize these surfaces. This thesis also contains appendices of tutorial articles I wrote on modeling in ellipsometry, and data analysis tools (classical least squares and multivariate curve resolution).
5

Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

Xiu, Yonghao 10 November 2008 (has links)
In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. In controlling bead-up and roll-off characteristics of water droplets the contact angle and contact angle hysteresis were very important and we investigated the determining conditions on different model surfaces with micro- and nanostructures. Two governing equations were proposed, one for contact angle based on Laplace pressure and one for contact angle hysteresis based on Young-Dupré equation. Based on these understanding on superhydrophobicity, possible applications of the superhydrophobicity for self-cleaning and water repellency were explored and application related technical issues were addressed. Based on our understanding of the roughness effect on superhydrophobicity (both contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, silica, and Si etc were successfully prepared. For engineering applications of superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and humid environment need to be investigated. Among these factors, UV stability is the first one to be studied. Silica surfaces with excellent UV stability were prepared. UV stability on the surface currently is 5,500 h according the standard test method of ASTM D 4329. No degradation on surface superhydrophobicity was observed. New methods for preparing superhydrophobic and transparent silica surfaces were investigated using urea-choline chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of surface structures. Another possible application for self-cleaning in photovoltaic panels was investigated on Si surfaces by construction of the two-scale rough structures followed by fluoroalkyl silane treatment. Regarding the mechanical robustness, epoxy-silica superhydrophobic surfaces were prepared by O2 plasma etching to generate enough surface roughness of silica spheres followed by fluoroalkyl silane treatment. A robustness test method was proposed and the test results showed that the surface is among the most robust surfaces for the superhydrophobic surfaces we prepared and currently reported in literature.
6

A Study of Dew Harvesting and Freezing Performance of Non-Wetting Surfaces

Fuller, Alexander Michael 12 July 2023 (has links)
Non-wetting surfaces offer enhanced capabilities over bare metal substrates for condensation with or without phase change. This trait can be utilized to broaden strategies in combating water scarcity in water stressed areas. Slippery lubricant infused surfaces have the ability to shed water droplets with lower nucleation times, taking advantage of more of the limited amount of time available to collect dew and fog than traditional surfaces. However, existing studies focus on short durations with scant information available on the longer-term performance or durability of the materials in application environments. To address this knowledge gap, dew harvesting studies were conducted over a 96 hour period on a lubricant infused surface vis-à-vis regular surface of the same material. Three phases of performance are identified and discussed with regard to the water harvesting potential. The second part of the thesis addresses water condensation under conditions where freezing is a potential issue. Non-wetting surfaces have been shown to be a promising method of limiting the formation of ice from sessile droplets. This study explores the effect of surface roughness on the freeze time of sessile water droplets. Superhydrophobic and hydrophobic, lubricant infused, copper surfaces were created via electrodeposition and chemical etching in conjunction with chemical treatments to achieve non-wetting surfaces of varying surface textures. Freezing characteristics on the surfaces are studied experimentally and, for the first time, computationally, wherein the surface is described using a fractal surface topography. The effect of surface engineering on the freezing dynamics and comparison between the experimental and the computational studies are elucidated. / Master of Science / The use of durable, water repelling surfaces that are also thermally conductive provide an opportunity to help alleviate strain from a growing world crisis, water scarcity. Lubricant infused surfaces shed water from their surface by providing a slippery layer for the droplets to slide on, as opposed to bare metal which water tends to cling to. This behavior makes lubricant infused surfaces attractive as a water harvesting method. However, these surfaces degrade over time and must be maintained to perform at their maximum capability, collecting water for 40 minutes more than a bare surface. This thesis focuses on the performance of these surfaces over a 96-hour operating period to characterize the effect lubricant drainage has on the water collection behavior. Freezing water droplets, commonly referred to as icing, poses concerns for safety and operational ability in industries like renewable energy generation, where icing limits efficiency. Non-wetting surfaces have a unique ability to inherently slow down the phase change of a water droplet to ice due to the lower contact area of droplets resting on the surface. This thesis examines superhydrophobic and lubricant infused surfaces of varying degrees of roughness to explore the effect that the contact angle and different surface structures have on the freezing rate of water on the surface. The experimental results are compared to numerical simulations, which is useful in designing systems that would implement this passive icing mitigation technique.
7

Fabrication Of Functional Nanostructures Using Polyelectrolyte Nanocomposites And Reduced Graphene Oxide Assemblies

Chunder, Anindarupa 01 January 2010 (has links)
A wide variety of nanomaterials ranging from polymer assemblies to organic and inorganic nanostructures (particles, wires, rods etc) have been actively pursued in recent years for various applications. The synthesis route of these nanomaterials had been driven through two fundamental approaches - 'Top down' and 'Bottom up'. The key aspect of their application remained in the ability to make the nanomaterials suitable for targeted location by manipulating their structure and functionalizing with active target groups. Functional nanomaterials like polyelectrolyte based multilayered thin films, nanofibres and graphene based composite materials are highlighted in the current research. Multilayer thin films were fabricated by conventional dip coating and newly developed spray coating techniques. Spray coating technique has an advantage of being applied for large scale production as compared to the dip coating technique. Conformal hydrophobic/hydrophilic and superhydrophobic/hydrophilic thermal switchable surfaces were fabricated with multilayer films of poly(allylaminehydrochloride) (PAH) and silica nanoparticles by the dip coating technique, followed by the functionalization with thermosensitive polymer-poly(N-isopropylacrylamide)(PNIPAAM) and perfluorosilane. The thermally switchable superhydrophobic/ hydrophilic polymer patch was integrated in a microfluidic channel to act as a stop valve. At 70 degree centigrade, the valve was superhydrophobic and stopped the water flow (close status) while at room temperature, the patch became hydrophilic, and allowed the flow (open status). Spray-coated multilayered film of poly(allylaminehydrochloride) (PAH) and silica nanoparticles was fabricated on polycarbonate substrate as an anti-reflection (AR) coating. The adhesion between the substrate and the coating was enhanced by treating the polycarbonate surface with aminopropyltrimethoxylsilane (APTS) and sol-gel. The coating was finally made abrasion-resistant with a further sol-gel treatment on top of AR coating, which formed a hard thin scratch-resistant film on the coating. The resultant AR coating could reduce the reflection from 5 to 0.3% on plastic. Besides multilayered films, the fabrication of polyelectrolyte based electrospun nanofibers was also explored. Ultrathin nanofibers comprising 2-weak polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylaminehydrochloride) (PAH) were fabricated using the electrospinning technique and methylene blue (MB) was used as a model drug to evaluate the potential application of the fibers for drug delivery. The release of MB was controlled in a nonbuffered medium by changing the pH of the solution. Temperature controlled release of MB was obtained by depositing temperature sensitive PAA/poly(N-isopropylacrylamide) (PNIPAAM) multilayers onto the fiber surfaces. The sustained release of MB in a phosphate buffered saline (PBS) solution was achieved by constructing perfluorosilane networks on the fiber surfaces as capping layers. The fiber was also loaded with a real life anti-depressant drug (2,3-tertbutyl-4-methoxyphenol) and fiber surface was made superhydrophobic. The drug loaded superhydrophobic nanofiber mat was immersed under water, phosphate buffer saline and surfactant solutions in three separated experiments. The rate of release of durg was monitored from the fiber surface as a result of wetting with different solutions. Time dependent wetting of the superhydrophobic surface and consequently the release of drug was studied with different concentrations of surfactant solutions. The results provided important information about the underwater superhydrophobicity and retention time of drug in the nanofibers. The nanostructured polymers like nanowires, nanoribbons and nanorods had several other applications too, based on their structure. Different self-assembled structures of semiconducting polymers showed improved properties based on their architectures. Poly(3-hexylthiophene) (P3HT) supramolecular structures were fabricated on P3HT-dispersed reduced graphene oxide (RGO) nanosheets. P3HT was used to disperse RGO in hot anisole/N, N-dimethylformamide solvents, and the polymer formed nanowires on RGO surfaces through a RGO induced crystallization process. The Raman spectroscopy confirmed the interaction between P3HT and RGO, which allowed the manipulation of the composite's electrical properties. Such a bottom-up approach provided interesting information about graphene-based composites and inspired to study the interaction between RGO and the molecular semiconductor-tetrasulphonate salt of copper phthalocyanine (TSCuPc) for nanometer-scale electronics. The reduction of graphene oxide in presence of TSCuPc produced a highly stabilized aqueous composite ink with monodispersed graphene sheets. To demonstrate the potential application of the donor (TSCuPc)'acceptor (graphene) composite, the RGO/TSCuPc suspension was successfully incorporated in a thin film device and the optoelectronic property was measured. The conductivity (dark current) of the composite film decreased compared to that of pure graphene due to the donor molecule incorporation, but the photoconductivity and photoresponsivity increased to an appreciable extent. The property of the composite film overall improved with thermal annealing and optimum loading of TSCuPc molecules.
8

Design of multifunctional materials with controlled wetting and adhesion properties

Chanda, Jagannath 24 March 2016 (has links)
Ice accretion on various surfaces can cause destructive effect of our lives, from cars, aircrafts, to infrastructure, power line, cooling and transportation systems. There are plenty of methods to overcome the icing problems including electrical, thermal and mechanical process to remove already accumulated ice on the surfaces and to reduce the risk of further operation. But all these process required substantial amount of energy and high cost of operation. To save the global energy and to improvement the safety issue in many infrastructure and transportation systems we have to introduce some passive anti-icing coating known as ice-phobic coating to reduce the ice-formation and ice adhesion onto the surface. Ice-phobic coatings mostly devoted to utilizing lotus-leaf-inspired superhydrophobic coatings. These surfaces show promising behavior due to the low contact area between the impacting water droplets and the surface. In this present study we investigate systematically the influence of chemical composition and functionality as well as structure of surfaces on wetting properties and later on icing behavior of surfaces. Robust anti-icing coating has been prepared by using modified silica particles as a particles film. Polymer brushes were synthesized on flat, particle surfaces by using Surface initiated ATRP. We have also investigated the effect of anti-icing behavior on the surfaces by varying surface chemistry and textures by using different sizes of particles. This approach is based on the reducing ice accumulation on the surfaces by reducing contact angle hysteresis. This is achieved by introducing nano to micro structured rough surfaces with varying surface chemistry on different substrates. Freezing and melting dynamics of water has been investigated on different surfaces by water vapour condensation in a high humidity (80%) condition ranging from super hydrophilic to super hydrophobic surfaces below the freezing point of water. Kinetics of frost formation and ice adhesion strength measurements were also performed for all samples. All these experiments were carried out in a custom humidity and temperature controlled chamber. We prepared a superhydrophobic surface by using Poly dimethyl siloxane (PDMS) modified fumed silica which display very low ice-adhesion strength almost 10 times lower than the unmodified surface. Also it has self-cleaning behavior after melting of ice since whole ice layer was folded out from the surface to remove the ice during melting. Systematic investigation of the effect of three parameters as surface energy, surface textures (structure, geometry and roughness) and mechanical properties of polymers (soft and stiff) on icing behavior has also been reported.
9

Control of Pore Structure in Plasma-Polymerized SiOCH Films for Gas Separation / Contrôle de la porosité dans les films SiOCH de polymère-plasma pour la séparation gazeuse

Lo, Chia-Hao 19 July 2010 (has links)
La synthèse d'une membrane composite formée d'une couche fine de surface de structure très réticulée et permsélective aux gaz déposée sur un substrat poreux a été étudiée comme solution pour accroître la perméabilité aux gaz tout en conservant une sélectivité importante. Une couche mince de polymère-plasma SiOCH a été retenue comme membrane de séparation gazeuse car elle possède une structure dont l'ultramicroporisté peut être contrôlée en ajustant les paramètres du procédé plasma comme la puissance, le flux de monomère et la pression de travail. Néanmoins, dans la membrane SiOCH, la taille moyenne des pores et leur distribution sont difficiles à appréhender par des techniques de caractérisation classiques, notamment proche de la surface car elle est très fine. Ce mémoire de thèse concerne le contrôle de la structure poreuse dans une couche mince de polymère-plasma SiOCH déposée sur un substrat polymère en utilisant un précurseur organosilicié. La spectroscopie d'annihilation de positron couplée à un faisceau de positron lent a été utilisée pour identifier la microstructure de couches minces SiOCH avec la profondeur. Ceci a nécessité tout d'abord l'acquisition d'une bonne connaissance de la caractérisation de l'annihilation de positron de matériaux polymères et céramiques. Des couches minces de SiOCH conformes ou superhydrophobes (SHP) ont été obtenues à deux fréquences différentes, respectivement à 13,56 MHz ou 40 kHz. Pour une couche conforme, le type de substrat, la structure chimique du précurseur et la puissance RF sont les paramètres majeurs qui influencent la structure des pores. Quand les films de SiOCH sont composées de deux couches (couche uniforme de surface et couche de transition) déposées sur un substrat poreux, l'analyse PAS met en évidence une couche de transition large et l'ensemble possède une perméabilité aux gaz élevée grâce à la porosité de surface du support. Lors de la préparation des couches minces SHP, quand la pression totale dépasse 0,6 mbar, la nucléation en phase gaz apparaît ce qui augmente la rugosité de la surface. Ceci induit des angles de contact à l'eau supérieurs à 160° et une hystérésis d'angles de contact avancée-reculée de seulement 2°. La préservation des chaînes carbonées et la microstructure sont les facteurs déterminant pour accroître l'hydrophobicité des couches minces de SiOCH. / In gas separation, the fabrication of composite membranes consisting of a permselective thin top layer with high cross-linking structures and a porous substrate has been regarded as a solution for improving gas permeability and simultaneously retaining high selectivity. A plasma-polymerized SiOCH film has been known as an appropriate gas separation membrane because it possesses a dense structure, the crosslinking degree of which could be controlled by adjusting plasma parameters such as plasma power, monomer flow rate, and system pressure. However, the pore size and distribution in SiOCH films, especially in the region of depth profile, are difficult to measure by conventional techniques because of they are very thin.This thesis is concerned with the control of pore structure in a plasma-polymerized SiOCH film on a polymeric substrate by using an organosilicon source. The positron annihilation spectroscopy (PAS) coupled to the slow positron beam technique was used to identify the microstructure of SiOCH films as a function of depth. This step required to have a good understanding of the positron annihilation characteristics of different materials such as organic, inorganic, and hybrid materials. Depending on plasma frequency adjustments, SiOCH films with a flat and a superhydrophobic (SHP) surface were fabricated at 13.56 MHz and 40 kHz, respectively. For a flat SiOCH film, substrate type, chemical structure of precursor, and RF power were the major variables that influenced the pore structure. When SiOCH films composed of two layers (bulk and transitions layers) were deposited on porous substrates, they displayed a long transition layer based on the PAS analysis and possessed a high gas permeability due to the surface porosity of the substrate. When the precursor used possessed a cyclic ring structure, an opportunity of a break-up of the cyclic ring would increase with increasing RF power and then induce formation of new big pores. For the preparation of SHP films, when the total pressure was higher than 0.6 mbar, the gas nucleation reaction was enhanced to induce roughness on SiOCH films, and it would show a high WCA of over 160o and a low WCAH of only 2 degrees. Both the hydrocarbon preservation and microstructure were the main factors in improving the surface superhydrophobicity of SiOCH films.
10

Modélisation et simulation des interfaces non classiques dans l’écoulement de Stokes et dans les composites élastiques fibreux / Modeling and simulation of non-classical interfaces in Stokes flow and the elastic fibrous composites

Tran, Anh-Tuan 01 December 2014 (has links)
Ce travail de thèse, constitué de deux parties apparemment très différentes, a pour objectif commun de modéliser et simuler certaines interfaces non classiques en mécanique des fluides et en mécanique des solides. Dans la première partie qu'est la partie principale du travail, l'écoulement de Stokes d'un fluide dans un canal encadré par deux parois solides parallèles est étudié. La surface d'une paroi étant supposée lisse, la condition d'adhérence parfaite classique est adoptée pour l'interface fluide-solide homogène correspondante. La surface de l'autre paroi étant supposée rugueuse et capable de piéger de petites poches d'air, l'interface liquide-solide correspondante est donc hétérogène. La première partie de ce travail consiste à homogénéiser l'interface liquide-solide hétérogène de façon à remplacer cette dernière par une interface fluide-solide homogène imparfaite caractérisée par une longueur de glissement effective. Le problème essentiel de déterminer la longueur de glissement effective est résolu par le développement : (i) d'une approche semi-analytique dans le cas où la surface rugueuse est périodique; (ii) d'une approche basée sur la méthode de solution fondamentale dans le cas où la surface rugueuse est aléatoire. Les résultats obtenus par les approches développées sont systématiquement comparés avec ceux délivrés par la méthode des éléments finis. La deuxième partie du travail est de déterminer les modules élastiques effectifs d'un composite fibreux dans lequel les interfaces entre la matrice et les fibres sont imparfaites et décrites par le modèle membranaire. Une méthode numérique efficace basée sur la transformée de Fourier est ainsi développée et implantée pour traiter le cas général où la section d'une fibre peut avoir une forme quelconque / The present work, consisting of two seemingly very different parties, aims at modeling and simulating some non-classical interfaces in fluid mechanics and solid mechanics. In the first part which is the main part of the work, the Stokes flow of a fluid in a channel bounded by two parallel solid walls is studied. The surface of a solid wall being assumed to be smooth, the classic perfect adherence condition is adopted for the corresponding homogeneous fluid-solid interface. The surface of the other wall being taken to be rough and capable of trapping small pockets of air, the corresponding liquid-solid interface is heterogeneous. The first part of this work is to homogenize the heterogeneous liquid-solid interface so as to replace it by an imperfect homogeneous fluid-solid interface characterized by an effective slip length. The essential underlying problem of determining the effective slip length is achieved by developing: (i) a semi-analytical approach when the rough surface is periodic; (ii) an approach based on the fundamental solution method when the surface is randomly rough. The results obtained by the developed approaches are systematically compared with those issued from the finite element method. The second part of the work is to determine the effective elastic moduli of a fiber composite in which the interfaces between the matrix and fibers are imperfect and described by the membrane model. An efficient numerical method based on the fast Fourier transform is developed and implemented to treat the general case where the section of a fiber can be of any shape

Page generated in 0.0853 seconds