1 |
Die magnetresonanztomografische Darstellung mesenchymaler Stromazellen in equinem Sehnengewebe mit Hilfe des Magic-Angle-EffektesOffhaus, Julia 20 June 2019 (has links)
Belastungsinduzierte Sehnen- und Bandschäden, besonders die der
Oberflächlichen Beugesehne, sind eine der häufigsten muskuloskelettalen Erkrankungen bei Sportpferden. Die intraläsionale Anwendung von multipotenten mesenchymalen Stromazellen (MSC) stellt eine vielversprechende Therapieoption zur Reduktion der Rezidivraten dar. Der Verbleib der applizierten Zellen und ihre Wirkungsmechanismen sind jedoch noch nicht vollständig geklärt. Die Magnetresonanztomografie (MRT) ist ein hervorragendes Werkzeug
zur Erkennung von Sehnengewebsabnormalitäten im distalen Gliedmaßenbereich sowie zum Verfolgen injizierter Zellen. Mit superparamagnetischen Eisenoxid-Partikeln (Spio) markierte MSC werden in der MRT als hypointense Artefakte sichtbar. Gesunde Sehnen zeigen jedoch auch ein hypointenses Signal, wodurch es nicht möglich ist, markierte Zellen von physiologischem Sehnengewebe zu unterscheiden. Ziel dieser Arbeit war die magnetresonanztomografische Darstellung Spio-markierter equiner MSC in unterschiedlichen Zellzahlen in equinem physiologischen Sehnengewebe mit Hilfe des Magic-Angle-Effektes.
In der vorliegenden Arbeit wurden equine MSC mit Spio-Partikeln
(BioPal Molday ION Rhodamine B, Inc., Worcester, USA) markiert und in präparierte Schnittinzisionen, in zuvor entnommenen Oberflächlichen Beugesehnen von Kadaverbeinen,in unterschiedlichen Zellzahlen von 106, 105, 104 MSC injiziert. Anschließend erfolgte eine magnetresonanztomografische Untersuchung der Sehnenkonstrukte jeweils in einem 90° sowie 55° Winkel zum Hauptmagnetfeld B0 in drei Magnetresonanztomografen unterschiedlicher Feldstärken (0,27 T (Tesla), 3 T, 7 T). Dabei wurden jeweils T1- und T2*-
gewichtete 3D-Gradientenechosequenzen genutzt. Im Anschluss erfolgte eine histologische Validierung der magnetresonanztomografischen Ergebnisse mittels Preußischblau-, Diamino-2-Phenylindol-Färbung (DAPI) und Hämatoxylin-Eosin-Färbung.
Im Nieder- und Hochfeld-MRT 3 T konnte eine signifikante Zunahme der
Signalintensität der Oberflächlichen Beugesehne in der T1- und T2*-gewichteten Sequenz mit Hilfe des Magic-Angle-Effektes (Konstruktwinkelung von 55° zum Hauptmagnetfeld B0) im Vergleich zur 90° Standardwinkelung verzeichnet werden (p < 0,05). Des Weiteren konnte die Ausprägung des Magic-Angle-Effektes im 3 T-Hochfeldsystem in der T1- und T2*-gewichteten Sequenz als deutlicher beurteilt werden als im Niederfeldsystem (p < 0,05). Im 7 THochfeldsystem
konnten keine signifikanten Unterschiede der Signalintensität der
Oberflächlichen Beugesehne in den unterschiedlichen Sequenzen und Winkelungen der Sehnenkonstrukte zum Hauptmagnetfeld B0 gefunden werden. Die Detektion einer Zellzahl von 106 markierten MSC war sowohl im Nieder- als auch im Hochfeldsystem und sowohl in der T1- als auch in der T2*-gewichteten Sequenz mit Hilfe des Magic-Angle-Effektes sicher möglich (p < 0,05). Darüber hinaus konnte im Hochfeld-MRT 7 T ebenfalls eine Zellzahl von
104 markierten MSC visuell detektiert werden. Des Weiteren konnte im Nieder- sowie 3 THochfeldsystem bei einer Zellzahl von 106 und 105 ein höheres Kontrast-Rausch-Verhältnis der T1-gewichteten Sequenzen beider Winkeltechniken gegenüber der T2*-gewichteten Sequenzen festgestellt werden. Darüber hinaus stellte sich das Kontrast-Rausch-Verhältnis
beider Sequenzen mit Hilfe des Magic-Angle-Effektes höher gegenüber der
Standardwinkelung von 90° zum Hauptmagnetfeld B0 dar. Außerdem konnte mit Hilfe des Magic-Angle-Effektes bei einer Zellzahl von 106 und 105 ein erhöhtes Kontrast-Rausch-Verhältnis in den T1- und T2*-gewichteten Sequenzen des 3 T-Hochfeldsystems gegenüber der Standardwinkelung und des Niederfeldsystems ermittelt werden. Des Weiteren konnte in beiden Systemen eine Erhöhung des Kontrast-Rausch-Verhältnisses mit steigender Zellzahl beobachtet werden. Außerdem zeigte die T1-gewichtete Sequenz mit Hilfe des Magic-Angle-
Effektes sowohl im Nieder- als auch im Hochfeldsystem das höchste Kontrast-Rausch-Verhältnis. Bei der qualitativen lichtmikroskopischen Auswertung der Preußischblau-gefärbten Proben konnte in allen Zellzahlen der Nachweis Preußischblau-positiver Strukturen erbracht werden. Der Großteil dieser positiven Strukturen war innerhalb spindelförmiger Zellen lokalisiert. Darüber hinaus konnte ein signifikant höheres Volumen Preußischblau-positiver MSC bei einer Zellzahl von 106 im Vergleich zu einer Zellzahl von 104 ermittelt werden (p <0,05). Des Weiteren konnte Fluoreszenzmikroskopisch in allen markierten Proben die Präsenz Rhodamin B-positiver Zellen entlang der Schnittinzisionen nachgewiesen werden.
Schlussfolgerung: Spio-markierte MSC sind in Abhängigkeit von ihrer Zellzahl im Nieder- und Hochfeld-MRT nachweisbar. Es ist eine Detektion ab einer Zellzahl von 105 im Nieder- und Hochfeld-MRT 3 T möglich. Des Weiteren ist die Visualisierung markierter MSC in einer Zellzahl von 104 in einem Hochfeld-MRT 7 T realisierbar. Darüber hinaus ist es mit Hilfe des Magic-Angle-Effektes möglich Spio-markierte MSC in gesundem Sehnengewebe im Nieder- und Hochfeldsystem zu detektieren. Als besonders geeignet konnte aufgrund des höheren
Kontrast-Rausch-Verhältnisses die T1-gewichtete Sequenz ermittelt werden.
Die Technik dieser Studie kann für zukünftige in-vivo-Studien zur Biodistribution von MSC und dem longitudinalen Zelltracking im Organismus von großem Nutzen sein.:1 EINLEITUNG ................................................................................................................. 1
2 LITERATURÜBERSICHT .............................................................................................. 3
2.1 Anatomie und Physiologie der Sehne am Beispiel der Oberflächlichen
Beugesehne des Pferdes ......................................................................................... 3
2.1.1 Makroskopische Anatomie der Oberflächlichen Beugesehne .................................. 3
2.1.2 Struktureller Aufbau und mikroskopische Anatomie ................................................ 6
2.2 Sehnenerkrankungen ............................................................................................... 7
2.2.1 Allgemeines und Definition ...................................................................................... 7
2.2.2 Pathophysiologie ..................................................................................................... 9
2.2.3 Sehnenheilung .......................................................................................................12
2.2.4 Diagnostik von Sehnenerkrankungen .....................................................................14
2.2.5 Therapie .................................................................................................................17
2.3 Multipotente Mesenchymale Stromazellen ............................................................21
2.3.1 Allgemeines ...........................................................................................................21
2.3.2 Einsatz von MSC bei Erkrankungen der equinen Oberflächlichen Beugesehne .....23
2.3.3 Wirkmechanismus ..................................................................................................24
2.3.4 Longitudinales Zelltracking .....................................................................................25
2.4 Magnetresonanztomografie ....................................................................................28
2.4.1 Allgemeines ...........................................................................................................28
2.4.2 Physikalische Prinzipien .........................................................................................28
2.4.3 Relaxation ..............................................................................................................30
2.4.4 Bildkontrast ............................................................................................................31
2.4.5 Repetitionszeit ........................................................................................................32
2.4.6 Echozeit .................................................................................................................32
2.4.7 Darstellung von Sehnen und Bändern ....................................................................33
2.4.8 Magic-Angle-Effekt .................................................................................................34
2.4.9 Suszeptibilitätsartefakte .........................................................................................35
3 ZIELSTELLUNG UND HYPOTHESEN .........................................................................38
4 MATERIAL UND METHODEN ......................................................................................39
4.1 Übersicht Versuchsaufbau......................................................................................39
4.2 Isolation der MSC ....................................................................................................39
4.3 Zellaufbereitung .......................................................................................................40
4.3.1 Expansion der MSC ...............................................................................................41
4.3.2 Markierung der MSC ..............................................................................................41
5.6 Histologie .................................................................................................................77
5.6.1 Preußischblau-Färbung ..........................................................................................77
5.6.2 Vergleich der Volumen der Preußischblau-positiven Strukturen zum Volumen der
hypointensen Artefakte im MR-Bild ........................................................................79
5.6.3 Hämatoxylin-Eosin-Färbung ...................................................................................84
5.6.4 Diamino-2-Phenylindol- (DAPI) -Färbung ...............................................................85
6 DISKUSSION ................................................................................................................87
6.1 Diskussion Material und Methodik .........................................................................87
6.1.1 Equine Oberflächliche Beugesehne .......................................................................87
6.1.2 Zellmarkierung und Zellviabilität .............................................................................87
6.1.3 Magnetresonanztomografie ....................................................................................88
6.1.4 Histologie ...............................................................................................................89
6.2 Diskussion Ergebnisse ...........................................................................................90
6.2.1 Magnetresonanztomografie ....................................................................................90
6.2.2 Histologie ...............................................................................................................95
6.3 Schlussfolgerung aus den Ergebnissen ................................................................95
7 ZUSAMMENFASSUNG ................................................................................................96
8 SUMMARY....................................................................................................................98
9 LITERATURVERZEICHNIS ........................................................................................ 100
ANHANG ........................................................................................................................... 115
DANKSAGUNG ................................................................................................................. 120
|
2 |
Strategien zur funktionellen MR-Bildgebung von experimentellen GliomenZimmer, Claus 10 April 2001 (has links)
Ziel der Untersuchungen war es, neue Strategien zu entwickeln, die zu einer Verbesserung der MR-Diagnostik von Gliomen führen. Im Vordergrund des Interesses stand dabei die MR-Charakterisierung von experimentellen Gliomen mittels superparamagnetischer Eisenoxide, wobei MION ("Monocrystalline-Iron-Oxide-Nanopartikel") als Modellsubstanz für einen Großteil der Untersuchungen benutzt wurde. In Experimenten zur Blut-Hirn-Schranke (BHS) wurde gezeigt, dass normales Hirngewebe jenseits der BHS mit Eisenoxiden erreicht werden kann, wenn artifiziell die BHS zuvor hyperosmotisch durch Mannitol-Infusion temporär geöffnet wurde. Neben der intrazellulären Aufnahme in Astrozyten werden Eisenoxide nach erfolgter BHS-Öffnung in signifikant höherem Maße von aktivierter Mikroglia phagozytiert. Nach selektiver Öffnung der BHS durch Bradykinin-Injektion in die A. carotis interna lässt sich selektiv der Transport von Eisenoxiden in das Gliomzentrum vergrößern. Am experimentellen Gliommodell ließ sich zeigen, dass intravenöse MION-Gabe zu einem charakteristischen ringförmigen Erscheinungsbild in der MRT der großen Tumoren führt: Die histologischen Untersuchungen bei mehreren Gliomarten (C6 und 9L) zeigen eindeutig die Phagozytose von Eisenpartikeln durch Gliomzellen selbst. Verglichen mit der Eisenoxid-Aufnahme in die Gliomzelle ist die Phagozytose der Eisenpartikel durch ortsständige Mikrogliazellen und Blutmakrophagen jedoch signifikant größer. Die intrazelluläre Aufnahme von MION durch Tumorzellen lies sich in Zellkulturexperimenten an verschiedenen Gliom- (C6, 9L) und Karzinom-Zelllinien (LX-1) bestätigen. In vitro konnte gezeigt werden dass die Konjugation von Transferrin (Tf) an eine Eisenoxidverbindung zu einer verstärkten intrazelluläre Aufnahme verglichen mit unkonjugiertem Verbindungen führt. Die Untersuchungen zur Bildgebung der Tumorvaskularisation von experimentellen Gliomen ergaben, dass durch die kombinatorische Anwendung eines kleinmolekularen und eines großmolekularen Markers mit anschließender einfacher Bildsubtraktion die vaskulären und interstitiellen Volumenfraktionen (VVF, IVF) ermittelt werden können. Auch die alleinige Injektion der noch experimentellen Blut-Pool-Marker MPEG-Pl-GdDTPA und Gadomer-17 ermöglicht im Tiermodell die quantitative Bestimmung sowohl des vaskulären Volumens (CBV) als auch der Permeabilität (P). Bei den Eisenoxiden verfälschen deren starke Suszeptibilitätseffekte die quantitative Bestimmung von Blutflussdaten, auch die Quantifizierung der Gefäßpermeabilität ist mit diesen Verbindungen mittels dynanischer MRT nicht möglich. / The aim of the studies was to develop new strategies for improving magnetic resonance imaging (MRI) of gliomas. In the majority of experiments the focus was on the characterization of experimental gliomas after administration of superparamagnetic iron oxides using MION (Monocrystalline Iron Oxide Nanoparticles) as a model compound. Experiments on the blood-brain barrier (BBB) demonstrated that iron oxides reach normal brain tissue beyond the BBB after their artificial, transient hyperosmotic opening by mannitol infusion. Upon opening of the BBB, iron oxides not only show intracellular uptake by astrocytes but are also phagocytosed in significantly higher amounts by activated microglia. Selective opening of the BBB by bradykinin injection into the internal carotid artery specifically increases the transport of iron oxides into the center of gliomas. Using an experimental glioma model, it was shown that intravenous administration of MION produces a characteristic ring enhancement of large tumors on MR images. Histologic studies of different types of gliomas (C6 and 9L) unequivocally demonstrated that iron oxide particles were phagocytosed by the glioma cells themselves. However, iron oxide uptake by glioma cells is significantly less pronounced compared to the phagocytosis of iron oxide particles by local microglial cells and blood macrophages. The incorporation of MION by tumor cells was confirmed in cell culture experiments using different glioma (C6, 9L) and carcinoma cell lines (LX-1). In vitro studies showed that conjugation of transferrin to an iron oxide compound enhanced intracellular uptake compared to unconjugated compounds. The imaging studies investigating tumor vascularization in experimental gliomas demonstrated that the combined use of a small-molecular and a large-molecular marker and simple image subtraction allow for determining vascular and interstitial volume fractions (VVF, IVF). Furthermore, injection of the blood pool markers MPEG-P1-Gd-DTPA and gadomer-17 alone likewise enables quantitative determination of both vascular volume (CBV) and permeability (P) in the animal model. Iron oxide particles, on the other hand, have pronounced susceptibility effects, which impair the quantitative determination of blood flow data. Nor do the particles allow for quantifying vascular permeability by dynamic MR imaging.
|
Page generated in 0.0156 seconds