11 |
Transporteigenschaften supraleitender YBa2Cu3O7-delta-Brückenkontakte strukturiert auf der Nanoskala mittels konventioneller und unkonventioneller LithographieKamm, Frank-Michael. January 2000 (has links)
Ulm, Univ., Diss., 2000.
|
12 |
Supraleitung amorpher Zirkon-Rhodium-Legierungen unter hydrostatischem HöchstdruckOttow, Jens, January 1984 (has links)
Thesis--Brunswick. / In Periodical Room.
|
13 |
Paarbrechung in Seltenerd-Übergangsmetall-BorkarbidenFreudenberger, Jens. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2000--Dresden.
|
14 |
Thermische Tieftemperatureigenschaften von Seltenerd-Übergangsmetall-BorkarbidenLipp, Dieter. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Dresden.
|
15 |
Realstrukturuntersuchungen von Seltenerd-Übergangsmetall-BorokarbidenYang-Bitterlich, Wei. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Dresden.
|
16 |
Transport properties and proximity effect of topological hybrid structures / Transporteigenschaften und Proximity-Effekt von topologischen HybridstrukturenBreunig, Daniel Manfred January 2021 (has links) (PDF)
Over the last two decades, accompanied by their prediction and ensuing realization, topological non-trivial materials like topological insulators, Dirac semimetals, and Weyl semimetals have been in the focus of mesoscopic condensed matter research. While hosting a plethora of intriguing physical phenomena all on their own, even more fascinating features emerge when superconducting order is included. Their intrinsically pronounced spin-orbit coupling leads to peculiar, time-reversal symmetry protected surface states, unconventional superconductivity, and even to the emergence of exotic bound states in appropriate setups.
This Thesis explores various junctions built from - or incorporating - topological materials in contact with superconducting order, placing particular emphasis on the transport properties and the proximity effect.
We begin with the analysis of Josephson junctions where planar samples of mercury telluride are sandwiched between conventional superconducting contacts. The surprising observation of pronounced excess currents in experiments, which can be well described by the Blonder-Tinkham-Klapwijk theory, has long been an ambiguous issue in this field, since the necessary presumptions are seemingly not met. We propose a resolution to this predicament by demonstrating that the interface properties in hybrid nanostructures of distinctly different materials yet corroborate these assumptions and explain the outcome. An experimental realization is feasible by gating the contacts. We then proceed with NSN junctions based on time-reversal symmetry broken Weyl semimetals and including superconducting order. Due to the anisotropy of the electron band structure, both the transport properties as well as the proximity effect depend substantially on the orientation of the interfaces between the materials. Moreover, an imbalance can be induced in the electron population between Weyl nodes of opposite chirality, resulting in a non-vanishing spin polarization of the Cooper pairs leaking into the normal contacts. We show that such a system features a tunable dipole character with possible applications in spintronics. Finally, we consider partially superconducting surface states of three-dimensional topological insulators. Tuning such a system into the so-called bipolar setup, this results in the formation of equal-spin Cooper pairs inside the superconductor, while simultaneously acting as a filter for non-local singlet pairing. The creation and manipulation of these spin-polarized Cooper pairs can be achieved by mere electronic switching processes and in the absence of any magnetic order, rendering such a nanostructure an interesting system for superconducting spintronics. The inherent spin-orbit coupling of the surface state is crucial for this observation, as is the bipolar setup which strongly promotes non-local Andreev processes. / Seit nun gut zwei Jahrzehnten stehen Materialien wie Topologische Isolatoren, Dirac Halbmetalle und Weyl Halbmetalle im Fokus der Forschung der mesoskopischen Festkörperphysik. Diese topologisch nicht-trivialen Materialien weisen sich durch eine Vielzahl faszinierender Eigenschaften aus, insbesondere, wenn sie in Kombination mit supraleitender Ordnung untersucht werden. Die intrinsisch sehr stark ausgeprägte Spin-Bahn Kopplung führt zu charakteristischen Oberflächenzuständen, die durch die Zeitumkehrsymmetrie geschützt sind, zu unkonventioneller Supraleitung und sogar zur Ausbildung exotischer, gebundener Zustände in entsprechenden Strukturen. Diese Dissertation untersucht die Transporteigenschaften als auch den Proximity-Effekt in verschiedenen Kontakten aus topologischen Materialien und Supraleitern.
Zu Beginn befassen wir uns mit Josephson-Kontakten, in denen planare Proben aus Quecksilbertellurid in Kontakt mit konventionellen Supraleitern gebracht werden. In solchen Nanostrukturen wurden ausgeprägte Exzessströme gemessen, die zudem in guter Übereinstimmung mit der Blonder-Tinkham-Klapwijk Theorie stehen. Diese Beobachtungen sind jedoch kontraintuitiv, da die Voraussetzungen für den Formalismus scheinbar nicht gegeben sind. Wir zeigen anhand der Grenzflächeneigenschaften zwischen sich deutlich unterscheidenden Materialien, dass diese Annahmen dennoch korrekt sind und die Messergebnisse erklären. Dies lässt sich mit Hilfe von Seitenkontakten in einem Experiment nachweisen. Des Weiteren untersuchen wir Weyl Halbmetalle mit gebrochener Zeitumkehrsymmetrie und im Kontakt mit einem zentralen Supraleiter. Die Transporteigenschaften, wie auch der Proximity-Effekt, hängen wegen der Anisotropie der Bandstruktur stark von der Ausrichtung der Grenzflächen zwischen den Materialien ab. Zudem lässt sich ein Ungleichgewicht in der Elektronenpopulation zwischen Weylknoten unterschiedlicher Chiralität einstellen, was zu einer endlichen Spinpolarisation der Cooper-Paare führt, die in die normalleitenden Kontakte eindringen. Das System weist dann einen steuerbaren Dipolcharakter auf, welcher interessant für Anwendungen in der Spintronik ist. Schlussendlich analysieren wir den Oberflächenzustand eines dreidimensionalen topologischen Isolators, der lokal supraleitende Ordnung aufweist. Wird ein solches System in den sogenannten bipolaren Setup eingestellt, kann es zur Erzeugung und Manipulation von Triplet-Cooper-Paaren mit endlicher Spinpolarisation im Supraleiter verwendet werden. Gleichzeitig stellt es einen Filter für nicht-lokale Spin-Singlet-Paarung dar. Realisiert wird dies mit Hilfe elektrischer Spannung, und bedarf insbesondere keiner magnetische Ordnung zur Ausrichtung des Spin. Stattdessen verlassen wir uns auf die starke Spin-Bahn-Kopplung des Oberflächenzustands sowie den bipolaren Setup, welcher den nicht-lokalen Transport deutlich verstärkt.
|
17 |
Identification of a possible superconducting transition above room temperature in natural graphite crystalsPrecker, Christian E., Esquinazi, Pablo D., Champi, Ana, Barzola-Quiquia, José, Zoraghi, Mahsa, Muinos-Landin, Santiago, Setzer, Annette, Böhlmann, Winfried, Spemann, Daniel, Meijer, Jan, Münster, Tom, Bähre, Oliver, Klöss, Gert, Beth, Henning 12 December 2016 (has links) (PDF)
Measuring with high precision the electrical resistance of highly ordered natural graphite samples from a Brazil mine, we have identified a transition at ∼350 K with ∼40 K transition width. The steplike change in temperature of the resistance, its magnetic irreversibility and time dependence after a field change, consistent with trapped flux and flux creep, and the partial magnetic flux expulsion obtained by magnetization measurements, suggest the existence of granular superconductivity below 350 K. The zero-field virgin state can only be reached again after zero field cooling the sample from above the transition. Paradoxically, the extraordinarily high transition temperature we found for this and several other graphite samples is the reason why this transition remained undetected so far. The existence of well ordered rhombohedral graphite phase in all measured samples has been proved by x-rays diffraction measurements, suggesting its interfaces with the Bernal phase as a possible origin for the high-temperature superconductivity, as theoretical studies predicted. The localization of the granular superconductivity at these two dimensional interfaces prevents the observation of a zero resistance state or of a full Meissner state.
|
18 |
Induced superconductivity in the topological insulator mercury telluride / Induzierte Supraleitung im topologischen Isolator QuecksilbertelluridMaier, Luis January 2015 (has links) (PDF)
The combination of a topological insulator (TI) and a superconductor (S), which together
form a TI/S interface, is expected to influence the possible surface states in the
TI. It is of special interest, if the theoretical prediction of zero energy Majorana states
in this system is verifiable. This thesis presents the experimental realization of such
an interface between the TI strained bulk HgTe and the S Nb and studies if the afore
mentioned expectations are met.
As these types of interfaces were produced for the first time the initial step was
to develop a new lithographic process. Optimization of the S deposition technique as
well as the application of cleaning processes allowed for reproducible fabrication of
structures. In parallel the measurement setup was upgraded to be able to execute the
sensitive measurements at low energy. Furthermore several filters have been implemented
into the system to reduce high frequency noise and the magnetic field control
unit was additionally replaced to achieve the needed resolution in the μT range.
Two kinds of basic geometries have been studied: Josephson junctions (JJs) and
superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts
with a small separation on a HgTe layer. These S/TI/S junctions are one of the
most basic structures possible and are studied via transport measurements. The transport
through this geometry is strongly influenced by the behavior at the two S/TI
interfaces. In voltage dependent differential resistance measurements it was possible
to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are
able to traverse the HgTe gap between both interfaces multiple times while keeping
phase coherence. Additionally using BTK theory it was possible to extract the interface
transparency of several junctions. This allowed iterative optimization for the highest
transparency via lithographic improvements at these interfaces. The increased transparency
and thus the increased coupling of the Nb’s superconductivity to the HgTe
results in a deeper penetration of the induced superconductivity into the HgTe. Due
to this strong coupling it was possible to enter the regime, where a supercurrent is
carried through the complete HgTe layer. For the first time the passing of an induced
supercurrent through strained bulk HgTe was achieved and thus opened the area for
detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded,
which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic
field compared to the JJ geometry allowed to conclude how the junction depends
on the phase difference between both superconducting contacts. Theoretical calculations
predicted a phase periodicity of 4p instead of 2p, if a TI is used as weak link
material between the contacts, due to the presence of Majorana modes. It could clearly
be shown that despite the usage of a TI the phase still was 2p periodic. By varying
further influencing factors, like number of modes and phase coherence length in the
junction, it might still be possible to reach the 4p regime with bound Majorana states
in the future. A good candidate for further experiments was found in capped HgTe
samples, but here the fabrication process still has to be developed to the same quality
as for the uncapped HgTe samples.
The second type of geometry studied in this thesis was a DC-SQUID, which consists
of two parallel JJs and can also be described as an interference device between two JJs.
The DC-SQUID devices were produced in two configurations: The symmetric SQUID,
where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear,
but instead has a 90° bent. These configurations allow to test, if the predicted
uniformity of the superconducting band gap for induced superconductivity in a TI
is valid. While the phase of the symmetric SQUID is not influenced by the shape of
the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID
in case of an uniform band gap and out of phase if p- or d-wave superconductivity
is dominating the transport, due to the 90° junction. As both devices are measured
one after another, the problem of drift in the coil used to create the magnetic field has
to be overcome in order to decide if the oscillations of both types of SQUIDs are in
phase. With an oscillation period of 0.5 mT and a drift rate in the range of 5.5 μT/h
the measurements on both configurations have to be conducted in a few hours. Only
then the total shift is small enough to compare them with each other. For this to be
possible a novel measurement system based on a real time micro controller was programmed,
which allows a much faster extraction of the critical current of a device. The
measurement times were reduced from days to hours, circumventing the drift problems
and enabling the wanted comparison. After the final system optimizations it has
been shown that the comparison should now be possible. Initial measurements with
the old system hinted that both types of SQUIDs are in phase and thus the expected
uniform band gap is more likely. With all needed optimizations in place it is now up
to the successors of this project to conclusively prove this last point.
This thesis has proven that it is possible to induce superconductivity in strained
bulk HgTe. It has thus realized the most basic sample geometry proposed by Fu and
Kane in 2008 for the appearance of Majorana bound states. Based on this work it is
now possible to further explore induced superconductivity in strained bulk HgTe to
finally reach a regime, where the Majorana states are both stable and detectable. / Aus theoretischen Betrachtungen geht hervor, dass die Kombination eines topologischen
Isolators (TI) und eines Supraleiters (S) zu einer TI/S Grenzfläche die möglichen
Oberflächenzustände im TI beeinflussen kann. Von besonderem Interesse ist dabei die
Vorhersage der Ausbildung von Majorana Zuständen bei Null-Energie. Diese Arbeit
beschäftigt sich mit der experimentellen Realisierung einer solchen Grenzfläche zwischen
dem TI verspanntes HgTe und dem S Nb und analysiert, ob die oben genannten
Effekte tatsächlich in diesem System auftreten.
Da diese Grenzflächen zum ersten Mal produziert wurden, musste zunächst ein
neuer lithographischer Prozess dafür entwickelt werden. Nach der Optimierung der
Depositionstechnik des S sowie der Anwendung von Reinigungsschritten, war eine
reproduzierbare Fertigung von Probenstrukturen möglich. Parallel dazu wurde das
Messsystem ausgebaut, damit die sensitiven Messungen bei geringer Energie durchgeführt
werden konnten. So wurden mehrere Frequenzfilter eingebaut, um Hochfrequenzrauschen
zu reduzieren und die Magnetfeldsteuerung ersetzt, damit die benötigte
Auflösung im μT Bereich ereicht werden konnte.
Es wurden zwei grundlegende Geometrien untersucht: Josephson Kontakte (engl.
Josephson junctions, JJ) und supraleitende Quanteninterferenzeinheiten (engl. superconducting
quantum interference devices, SQUIDs). Eine JJ besteht aus zwei Nb Kontakten
mit einem kleinen Abstand zueinander, die auf einer HgTe Schicht aufgebracht
werden. Diese S/TI/S Kontakte bilden eine der grundlegendsten Strukturen, die möglich
sind und wurden mit Hilfe von Transportmessungen untersucht. Der Ladungstransport
in dieser Geometrie wird stark durch die beiden S/TI Grenzflächen beeinflusst.
In spannungsabhängigen Messungen des differenziellen Widerstandes konnten
mehrfache Andreev Reflexionen in den JJ nachgewiesen werden, was zeigt, dass
Elektronen und Löcher die HgTe Lücke zwischen beiden Nb Kontakten wiederholt
phasenkoherent überwinden können. Zusätzlich konnte mit Hilfe der BTK Theorie
die Transparenz der Grenzflächen bestimmt werden. Dies erlaubte eine iterative Optimierung
zum Erreichen der höchst möglichen Transparenz durch lithographische Verbesserungen
an den Grenzflächen. Eine verbesserte Transparenz erlaubt eine stärkere
Kopplung der Supraleitung des Nb an das HgTe und somit ein tieferes Eindringen
der induzierten Supraleitung in die HgTe Schicht. Aufgrund der verbesserten Ankopplung
war es möglich, das Regime zu erreichen, in dem ein Suprastrom durch die
HgTe Schicht zwischen den Nb Kontakten getragen werden kann. Erstmals konnte ein
induzierter Suprastrom durch verspanntes HgTe geleitet werden und ermöglichte es,
in diesem Forschungsbereich mit detaillierten Analysen zu beginnen. Es wurde die
magnetische Abhängigkeit des Suprastroms in der JJ aufgenommen, auch bekannt als
Fraunhofer Muster. Die Periodizität dieses Musters im Magnetfeld im Vergleich zur
geometrischen Ausdehnung der JJ erlaubt Rückschlüsse darüber, wie der Suprastrom
der JJ von der Phasendifferenz zwischen beiden supraleitenden Kontakten abhängt.
Theoretische Berechnungen haben vorhergesagt, dass die Periodizität dieser Phasenbeziehung
von ursprünglich 2p auf 4p wechselt, falls ein TI als Material zwischen
den beiden Nb Kontakten verwendet wird, da Majorana Moden auftreten. Es konnte
jedoch klar gezeigt werden, dass trotz Verwendung eines TI die Phasendifferenz
immer noch 2p periodisch war. Durch die Variation weiterer Einflussfaktoren, wie
die Anzahl der möglichen Moden oder die Phasenkohärenzlänge in der JJ könnte es
in Zukunft trotz allem immer noch möglich sein, einen Bereich zu erreichen, in dem
eine 4p Periodizität mit Majorana Zuständen vorliegt. Ein erfolgversprechender Kandidat
für diese Experimente konnte in verspanntem HgTe mit CdHgTe Deckschicht
gefunden werden, jedoch muss der Fabrikationsprozess für diese Material erst noch
entwickelt werden, um in der Lage zu sein, Strukturen zu produzieren, die qualitativ
vergleichbar mit denen ohne Deckschicht sind.
Der zweite Geometrie-Typ, der untersucht wurde, ist ein DC-SQUID, das aus zwei
parallelen JJs besteht und analog auch als Interferometer zweier JJs gesehen werden
kann. Es wurden zwei Arten von DC-SQUIDs produziert: Das symmetrische SQUID,
bestehend aus zwei identischen JJs und das asymmetrische SQUID, bei dem eine JJ
nicht linear aufgebaut ist, sondern beide Nb Kontakte statt dessen einen Winkel von
90° zueinander aufweisen. Diese beiden Arten erlauben es die fehlende Winkelabhängigkeit
der supraleitenden Bandlücke zu überprüfen, die für induzierte Supraleitung
in einem TI prognostiziert wurde. Die Phase des symmetrischen SQUIDs wird nicht
durch die Form der supraleitenden Bandlücke beeinflusst. Daher kann es als Referenz
verwendet werden, um eine eventuelle Phasenverschiebung des asymmetrischen
SQUIDs zu erkennen. Ist keine Phasenverschiebung vorhanden, ist dies eine Bestätigung
der Uniformität der Bandlücke. Falls jedoch eine Phasenverschiebung aufgrund
des 90° Kontaktes auftritt, würde der Transport hauptsächlich durch p- oder d-artige
Supraleitung getragen werden. Da beide SQUIDs nacheinander vermessen werden,
muss sichergestellt werden, dass Drifteffekte in der magnetfelderzeugenden Spule keinen
Einfluss auf den Vergleich haben. Die typische Oszillationsfrequenz der SQUIDs
beträgt 0.5 mT und die Driftrate der Spule liegt im Bereich von 5.5 μT/h. Um einen
aussagekräftigen Vergleich durchführen zu können, müssen die Messungen an beiden
SQUIDs in wenigen Stunden durchgeführt werden, damit der Gesamtdrift klein genug
bleibt. Um diese Messgeschwindigkeit zu erreichen, wurde ein neues Messsystem zur
Aufnahme des kritischen Stroms, basierend auf einem Echtzeit Microcontroller, entwickelt.
Dies reduziert die Zeitskala der benötigten Messungen von Tagen auf Stunden
und erlaubt es so, den gewünschten Vergleich durchzuführen. Nachdem alle Optimierungen
im Messsystem realisiert wurden, konnte gezeigt werden, dass der Vergleich
nun tatsächlich möglich ist. Erste Testmessungen mit dem alten Messsystem legen
nahe, dass das asymmetrische SQUID ein Maximum bei B = 0 T zeigt und somit
die homogene Bandlücke das wahrscheinlichere Resultat ist. Da nun alle messspezifischen
Optimierungen abgeschlossen sind, sollte es den Nachfolgern dieses Projektes
zukünftig möglich sein, die finale Messung durchzuführen.
Diese Arbeit hat gezeigt, dass es möglich ist, Supraleitung in verspanntem HgTe zu
induzieren. Es wurde somit die grundlegendste Probengeometrie realisiert, die von Fu
und Kane in 2008 für das Auftreten von Majorana Zuständen vorgeschlagen wurde.
Ausgehend von dieser Vorarbeit kann nun das Regime der induzierten Supraleitung
in verspanntem HgTe weiter erforscht werden, um schlussendlich in einen Bereich
vorzustoßen, in dem Majorana Zustände zugleich stabil und messbar sind.
|
19 |
Induced topological superconductivity in HgTe based nanostructures / Induzierte topologische Supraleitung in HgTe basierten NanostrukturenWiedenmann, Jonas January 2018 (has links) (PDF)
This thesis describes the studies of topological superconductivity, which is predicted to
emerge when pair correlations are induced into the surface states of 2D and 3D topolog-
ical insulators (TIs). In this regard, experiments have been designed to investigate the
theoretical ideas first pioneered by Fu and Kane that in such system Majorana bound
states occur at vortices or edges of the system [Phys. Rev. Lett. 100, 096407 (2008), Phys.
Rev. B 79, 161408 (2009)]. These states are of great interest as they constitute a new
quasiparticle which is its own antiparticle and can be used as building blocks for fault
tolerant topological quantum computing.
After an introduction in chapter 1, chapter 2 of the thesis lays the foundation for the
understanding of the field of topology in the context of condensed matter physics with a
focus on topological band insulators and topological superconductors. Starting from a
Chern insulator, the concepts of topological band theory and the bulk boundary corre-
spondence are explained. It is then shown that the low energy Hamiltonian of mercury
telluride (HgTe) quantum wells of an appropriate thickness can be written as two time
reversal symmetric copies of a Chern insulator. This leads to the quantum spin Hall effect.
In such a system, spin-polarized one dimensional conducting states form at the edges
of the material, while the bulk is insulating. This concept is extended to 3D topological
insulators with conducting 2D surface states. As a preliminary step to treating topological
superconductivity, a short review of the microscopic theory of superconductivity, i.e. the
theory of Bardeen, Cooper, and Shrieffer (BCS theory) is presented. The presence of
Majorana end modes in a one dimensional superconducting chain is explained using the
Kitaev model. Finally, topological band insulators and conventional superconductivity
are combined to effectively engineer p-wave superconductivity. One way to investigate
these states is by measuring the periodicity of the phase of the Josephson supercurrent
in a topological Josephson junction. The signature is a 4π-periodicity compared to the
2π-periodicity in conventional Josephson junctions. The proof of the presence of this
effect in HgTe based Josephson junction is the main goal of this thesis and is discussed in
chapters 3 to 6.
Chapter 3 describes in detail the transport of a 3D topological insulator based weak
link under radio-frequency radiation. The chapter starts with a review of the state of
research of (i) strained HgTe as 3D topological insulator and (ii) the progress of induc-
ing superconducting correlations into the topological surface states and the theoretical
predictions of 3D TI based Josephson junctions. Josephson junctions based on strained
HgTe are successfully fabricated. Before studying the ac driven Josephson junctions, the
dc transport of the devices is analysed. The critical current as a function of temperature
is measured and it is possible to determine the induced superconducting gap. Under
rf illumination Shapiro steps form in the current voltage characteristic. A missing first
step at low frequencies and low powers is found in our devices. This is a signature of
a 4π-periodic supercurrent. By studying the device in a wide parameter range - as a
147148 SUMMARY
function of frequency, power, device geometry and magnetic field - it is shown that the
results are in agreement with the presence of a single gapless Andreev doublet and several
conventional modes.
Chapter 4 gives results of the numerical modelling of the I −V dynamics in a Josephson
junction where both a 2π- and a 4π-periodic supercurrents are present. This is done in
the framework of an equivalent circuit representation, namely the resistively shunted
Josephson junction model (RSJ-model). The numerical modelling is in agreement with
the experimental results in chapter 3. First, the missing of odd Shapiro steps can be
understood by a small 4π-periodic supercurrent contribution and a large number of
modes which have a conventional 2π-periodicity. Second, the missing of odd Shapiro
steps occurs at low frequency and low rf power. Third, it is shown that stochastic processes
like Landau Zener tunnelling are most probably not responsible for the 4π contribution.
In a next step the periodicity of Josephson junctions based on quantum spin Hall
insulators using are investigated in chapter 5. A fabrication process of Josephson junctions
based on inverted HgTe quantum wells was successfully developed. In order to achieve a
good proximity effect the barrier material was removed and the superconductor deposited
without exposing the structure to air. In a next step a gate electrode was fabricated which
allows the chemical potential of the quantum well to be tuned. The measurement of the
diffraction pattern of the critical current Ic due to a magnetic field applied perpendicular
to the sample plane was conducted. In the vicinity to the expected quantum spin Hall
phase, the pattern resembles that of a superconducting quantum interference device
(SQUID). This shows that the current flows predominantly on the edges of the mesa.
This observation is taken as a proof of the presence of edge currents. By irradiating the
sample with rf, missing odd Shapiro steps up to step index n = 9 have been observed. This
evidences the presence of a 4π-periodic contribution to the supercurrent. The experiment
is repeated using a weak link based on a non-inverted HgTe quantum well. This material
is expected to be a normal band insulator without helical edge channels. In this device,
all the expected Shapiro steps are observed even at low frequencies and over the whole
gate voltage range. This shows that the observed phenomena are directly connected
to the topological band structure. Both features, namely the missing of odd Shapiro
steps and the SQUID like diffraction pattern, appear strongest towards the quantum spin
Hall regime, and thus provide evidence for induced topological superconductivity in the
helical edge states.
A more direct way to probe the periodicity of the Josephson supercurrent than using
Shapiro steps is the measurement of the emitted radiation of a weak link. This experiment
is presented in chapter 6. A conventional Josephson junction converts a dc bias V to
an ac current with a characteristic Josephson frequency fJ
= eV /h. In a topological
Josephson junction a frequency at half the Josephson frequency fJ /2 is expected. A
new measurement setup was developed in order to measure the emitted spectrum of a
single Josephson junction. With this setup the spectrum of a HgTe quantum well based
Josephson junction was measured and the emission at half the Josephson frequency fJ /2
was detected. In addition, fJ emission is also detected depending on the gate voltage and
detection frequency. The spectrum is again dominated by half the Josephson emission at
low voltages while the conventional emission is determines the spectrum at high voltages.
A non-inverted quantum well shows only conventional emission over the whole gateSUMMARY 149
voltage and frequency range. The linewidth of the detected frequencies gives a measure
on the lifetime of the bound states: From there, a coherence time of 0.3–4ns for the fJ /2
line has been deduced. This is generally shorter than for the fJ line (3–4ns).
The last part of the thesis, chapter 7, reports on the induced superconducting state
in a strained HgTe layer investigated by point-contact Andreev reflection spectroscopy.
For the experiment, a HgTe mesa was fabricated with a small constriction. The diameter
of the orifice was chosen to be smaller than the mean free path estimated from magne-
totransport measurements. Thus one gets a ballistic point-contact which allows energy
resolved spectroscopy. One part of the mesa is covered with a superconductor which
induces superconducting correlations into the surface states of the topological insulator.
This experiment therefore probes a single superconductor normal interface. In contrast to
the Josephson junctions studied previously, the geometry allows the acquisition of energy
resolved information of the induced superconducting state through the measurement
of the differential conductance dI/dV as a function of applied dc bias for various gate
voltages, temperatures and magnetic fields. An induced superconducting order parame-
ter of about 70µeV was extracted but also signatures of the niobium gap at the expected
value around Δ Nb
≈ 1.1meV have been found. Simulations using the theory developed by
Blonder, Tinkham and Klapwijk and an extended model taking the topological surface
states into account were used to fit the data. The simulations are in agreement with a
small barrier at the topological insulator-induced topological superconductor interface
and a high barrier at the Nb to topological insulator interface. To understand the full con-
ductance curve as a function of applied voltage, a non-equilibrium driven transformation
is suggested. The induced superconductivity is suppressed at a certain bias value due to
local electron population. In accordance with this suppression, the relevant scattering
regions change spatially as a function of applied bias.
To conclude, it is emphasized that the experiments conducted in this thesis found
clear signatures of induced topological superconductivity in HgTe based quantum well
and bulk devices and opens up the avenue to many experiments. It would be interesting
to apply the developed concepts to other topological matter-superconductor hybrid
systems. The direct spectroscopy and manipulation of the Andreev bound states using
circuit quantum electrodynamic techniques should be the next steps for HgTe based
samples. This was already achieved in superconducting atomic break junctions by the
group in Saclay [Science 2015, 349, 1199-1202 (2015)]. Another possible development
would be the on-chip detection of the emitted spectrum as a function of the phase φ
through the junction. In this connection, the topological junction needs to be shunted
by a parallel ancillary junction. Such a setup would allow the current phase relation
I(φ) directly and the lifetime of the bound states to be measured directly. By coupling
this system to a spectrometer, which can be another Josephson junction, the energy
dependence of the Andreev bound states E(φ) could be obtained. The experiments on
the Andreev reflection spectroscopy described in this thesis could easily be extended to
two dimensional topological insulators and to more complex geometries, like a phase
bias loop or a tunable barrier at the point-contact. This work might also be useful for
answering the question how and why Majorana bound states can be localized in quantum
spin Hall systems. / Die vorliegende Dissertation befasst sich mit der experimentellen Untersuchung von
topologischer Supraleitung, die durch die Kombination von konventionellen Supraleitern mit 2D- und 3D- topologischen Isolatoren (TI) entsteht. Diesbezüglich wurden Experi- mente durchgeführt, die auf zwei bahnbrechenden Arbeiten von Fu und Kane [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)] aufbauen. Diesen zufolge wird in supraleitenden topologischen Isolatoren ein neuartiges Quasiteilchen, ein sogenanntes Majorana-Fermion, vorhergesagt. Das große Interesse an diesem Teilchen beruht auf des- sen besonderen Eigenschaften. Es sind Fermionen mit halbzahligen Spin, jedoch besitzen sie keine Ladung und es ist gleichzeitig sein eigenes Antiteilchen. Darüber hinaus besitzt das Teilchen im Vergleich zu konventionellen Fermionen eine andere Austauschstatistik und zählt daher zu den sogenannten nicht-abelschen Anyonen. Aufgrund dieser Eigen- schaften wurde vorhergesagt, dass sie für weniger fehleranfällige Quantenbits als Bauteile für einen Quantencomputer verwendet werden können.
Nach einer Einleitung in Kapitel 1 folgt in Kapitel 2 eine Einführung in das Konzept von Topologie in der Festkörperphysik. Der Schwerpunkt liegt dabei auf zwei Materialklassen, topologischen Isolatoren und topologische Supraleiter. Zunächst wird ein Zweibandmo- dell, der Chern-Isolator, beschrieben, um das Konzept von topologischen Isolatoren und die Entstehung von Oberflächenzuständen darzulegen. Es ist möglich die Bandstruktur von Quecksilbertellurid- (HgTe-) Quantentrögen als zwei zeitumkehrinvariante Kopien des Chern-Isolators zu interpretieren, was zu einem 2D topologischen Isolator führt. Das Konzept von 2D-TIs wird auf drei Dimensionen erweitert. Eine Einführung in konventio- nelle Supraleitung und insbesondere die mikroskopische Theorie von Bardeen, Cooper und Schrieffer dient einem pädagogischen Zugang zur topologischen Supraleitung. Eine eindimensionale supraleitenden Kette, entwickelt von Alexei Kitaev, dient der Erklärung für die Entstehung von Majorana-Fermionen in p-Wellen Supraleitern. Es ist möglich diesen Zustand durch die Kombination von konventionellen Supraleitern und topologi- schen Isolatoren zu verwirklichen. In dieser Dissertation wird die erwartet topologische Supraleitung in einem sogenannten Josephson-Kontakt untersucht. Dabei wurde vorher- gesagt, dass in einem “topologischen Josephson-Kontakt”die Phase des Suprastromes eine 4π-Periodizität besitzt, während ein normaler Josephson-Kontakt 2π-periodisch ist. Ziel dieser Arbeit ist der experimentelle Nachweis der 4π-Periodizität des Suprastroms in Josephson-Kontakten, die auf HgTe-Bauelementen beruhen. Als Methodik eignet sich die Messung der Shapiro-Plateaus und der Emission des Josephson-Kontaktes an, die ausführlich in den Kapiteln 3 bis 6 werden.
In Kapitel 3 wird der Transport in Josephson-Kontakten, die auf dem dreidimensio- nalen topologischen Isolator HgTe beruhen unter Einfluss von Mikrowellenstrahlung detailliert ausgeführt. Dieser Teil beginnt mit einem Überblick über die Eigenschaften von HgTe als dreidimensionaler topologischer Isolator und zeigt insbesondere den Nachweis der Oberfächenleitung von relativistischen Elektronen auf. Des Weiteren wird der Stand der Forschung von Josephson-Kontakten auf diesem Materialsystem dargelegt. In solchen
Strukturen werden nämlich aufgrund von Majorana-Fermionen gebundene Andreev- Zustände erwartet, welche sich in der Mitte der supraleitenden Bandlücke (bei null Energie) kreuzen. Sie werden als “gapless Andreev Bound States”bezeichnet. Die Existenz dieser Zustände kann durch den Nachweis einer 4π-Periodizität der Phase des Supra- stroms bewiesen werden. Da die endliche Lebensdauer dieser Zustände “langsamen”dc- Messungen den Nachweis der Periodizität nicht erlauben, wird Strahlung im Gigahertz Frequenzbereich verwendet. Josephson-Kontakte aus 3D-HgTe-Heterostrukturen werden erfolgreich lithografiert. Zunächst werden die Strukturen mit dc-Messungen charakte- risiert und es wird gezeigt, dass der Suprastrom einen Josephson-Effekt aufweist. Die Temperaturabhängigkeit des kritischen Stroms wird simuliert, wodurch die Bestimmung der Größe der induzierten supraleitenden Bandlücke ermöglicht wird. Durch Mikrowel- lenstrahlung entstehen Shapiro-Plateaus in der Strom-Spannungskennlinie I −V -Kurve. Der Spannungsabstand von zwei aufeinander folgenden Plateaus spiegelt die Periodizität des Josephsonstroms wider. Zu erwarten wäre, dass der Abstand in einem topologischen Josephson-Kontakt im Vergleich zu einem konventionellen Josephson-Kontakt doppelt so groß ist (oder anders formuliert: die ungeradzahligen Plateau-Indizes fehlen). In den Strom-Spannungskennlinien wird jedoch beobachtet, dass der erste erwartete Schritt ausbleibt. Alle höheren ungeradzahligen Schritte sind sichtbar. Durch die Untersuchung des Phänomens als Funktion von Mikrowellenfrequenz, Mikrowellenamplitude, Magnet- feldstärke und Probengeometrie wird argumentiert, dass die Ergebnisse der Experimente mit einem topologischen Andreev-Zustand und einer großen Zahl konventioneller Moden vereinbar sind.
Um die experimentellen Ergebnisse aus Kapitel 3 nachzuvollziehen, werden in Kapitel 4 die I −V -Kennlinie eines Josephson-Kontaktes mit einer linearen Kombination eines 2π- und eines 4π-periodischen Suprastroms unter Mikrowellenstrahlung numerisch simuliert. Dies erfolgt durch ein Netzwerkmodell, welches aus einem Josephson-Kontakt in Parallelschaltung zu einem ohmschen Widerstand besteht (RSJ-Modell). Die Ergebnisse aus Kapitel 3 können nur durch das Vorhandensein eines 4π-periodischem Suprastroms I4π eindeutig numerisch simuliert werden. Darüber hinaus wird herausgestellt, dass eine Kopplung des Systems an die 4π-periodische Komponente möglich ist, obwohl der Beitrag zum Gesamtstrom Ic sehr klein ist (I4π « Ic ).
Die Grundlage für die Experimente in Kapitel 5 bildet ein Josephson-Kontakt, der auf einem invertierten HgTe-Quantentrog basiert. Dieser besitzt helikale Randkanäle, welche mit Supraleitern topologisch geschützte Andreev-Zustände formen. Hierfür ist zuerst ein neuer Lithographieprozess zur Herstellung der Proben entwickelt worden. Da sich der HgTe-Quantentrog unter einer Hg0.3Cd0.7Te-Barriere befindet, muss diese für eine gute induzierte Supraleitung lokal entfernt und der Supraleiter aufgetragen werden, ohne das Vakuum zu brechen. Zur Variation der Ladungsträgerdichte im Josephson-Kontakt wird eine Feldeffektelektrode auf der Struktur platziert. Die Messung des Beugungsmusters des kritischen Stroms als Funktion des Magnetfeldes erlaubt es, die Stromverteilung in der Probe zu untersuchen. Das Beugungsmuster ähnelt dem eines supraleitenden Quanteninterferenzbauelement [engl. Superconducting Quantum Interference Device: (SQUID)] und zeigt, dass der Strom vorwiegend am Rand der Probe fließt. Durch die
Bestrahlung mit Mikrowellen werden fehlende ungeradzahlige Shapiro-Plateaus bis zum
Stufenindex n = 9 beobachtet. Dies verdeutlicht, dass der Strom eine 4π-periodischen
Beitrag aufweist. Das Experiment wird mit einem nicht-invertierten HgTe-Quantentrog wiederholt. Dieser ist nicht in der Quanten-Spin-Hall-Phase und zeigt über den gesamten Parameterbereich alle erwarteten Shapiro-Plateaus, was beweist, dass die Topologie der Probe eine wichtige Eigenschaft ist, um die 4π-Periodizität zu beobachten. Beide Effekte, das SQUID-Beugungsmuster und die verschwindenden ungeradzahligen Shapiro- Plateaus, sind in der Nähe der Quanten-Spin-Phase am sichtbarsten und können daher als Beweis für induzierte topologische Supraleitung in spinpolarisierten Randkanälen interpretiert werden.
Eine Messmethode zur direkten Bestimmung der Periodizität des Suprastromes, an- ders als die Verwendung von Shapiro-Plateaus, ist die Messung der Josephson-Emission, was in Kapitel 6 beschrieben wird. Ein topologischer Josephson-Kontakt emittiert Strah- lung bei der halben Josephsonfrequenz f J /2 aufgrund der 4π-Periodizität des Joseph- sonstromes. Hierfür wird ein neuer experimenteller Aufbau entwickelt, um das kleine Emissionssignal eines einzelnen Josephson-Kontaktes zu verstärken. Dieser neue Aufbau erlaubt es, das Spektrum eines invertierten HgTe-Quantentrog zu messen und eine Emis- sion bei f J /2 zu detektieren. Je nach Ladungsträgerdichte und Detektionfrequenz wird auch gewöhnliche Emission bei f J im Spektrum beobachtet. Generell dominiert aber bei niedriger Spannung die f J /2-Emission und bei höheren Spannungen die f J . Da Spannung und ac-Frequenz durch die zweite Josephson-Gleichung proportional zueinander lässt sich das Verhalten mit den Ergebnissen der Shapiro-Plateau-Messungen vereinbaren. Darüber hinaus ist aus der Linienbreite der Emissionssignale eine Lebensdauer für die ABS in der Größenordnung von 0.3 − 4 ns für die f J /2-Emission und 3 − 4 ns für die f J - Emission abgeschätzt worden. Ein nicht-invertierter Quantentrog zeigt im Vergleich zum invertierten nur gewöhnliche Emission bei f J über den gesamten zugänglichen Frequenz- und Ladungsträgerbereich.
Im letzten Teil der Arbeit, in Kapitel 7, wird die in den 3D-topologischen Isolator HgTe induzierte Supraleitung mit Hilfe von Andreev-Punktkontaktspektroskopie unter- sucht. Hierfür wird eine HgTe-Struktur mit einer Verengung fabriziert, deren Durchmesser kleiner als die mittlere freie Weglänge der topologischen Oberflächenzustände ist und somit eine energieabhängige Spektroskopie des Zustandes erlaubt. Auf einer Seite der Verengung werden supraleitende Paarkorrelationen durch einen gewöhnlichen Supralei- ter Niob induziert. Diese Struktur ermöglicht daher die Untersuchung der Grenzfläche zwischen einem Supraleiter und einem Normalleiter (topologischer Isolator). Durch die Messung der differentiellen Leitfähigkeit d I /dV als Funktion der dc-Spannung ist es möglich die Energieabhängigkeit der Supraleitung zu untersuchen. Eine induzierte supraleitenden Bandlücke von 70 µeV wird gefunden. Die Leitfähigkeit zeigt Signatu- ren einer weiteren supraleitende Bandlücke des konventionellen Supraleiters Niob von
∆Nb ≈ 1.1 meV. Die Leitfähigkeit wird zum einen mit der Theorie von Blonder, Tinkham und Klapwijk modelliert und zum anderen mit einem erweiterten Modell, welches die 2D Oberflächenzustände des topologischen Isolators berücksichtigt simuliert. Für die Grenzfläche topologischer Isolator mit topologischem Supraleiter wird eine hohe Trans- missionswahrscheinlichkeit (niedrige Barriere) festgestellt, während an der Grenzfläche zwischen dem konventionellen Supraleiter und dem topologischen Isolator eine hohe
Barriere in Übereinstimmung mit dem Modell war. Der Transportmechanismus wird
durch eine Unterdrückung der induzierten Supraleitung durch eine Nichtgleichgewichts-
verteilung der Zustände als Funktion der Spannung erklärt.
Die vorliegende Dissertation konnte klare Signaturen von induzierter topologischer Supraleitung in Josephson-Kontakten auf Basis von HgTe-Quantentrögen und Volumen- material aufzeigen. Sie kann auch als Ausgangspunkt für eine große Anzahl von weiter- führenden Experimenten dienen. Die hier entwickelte Technik und auch Theorie kann auf andere topologische Zustände in Verbindung mit Supraleitern angewandt werden. Ein weiteres Experiment für HgTe-Strukturen ließe sich beispielsweise mit Hilfe von su- praleitenden Resonatoren die Spektroskopie und Manipulation der mikroskopischen topologischen Andreev-Zustände durchführen. Diese Technik wurde schon erfolgreich von Janvier et al . auf mechanisch kontrollierten supraleitenden Bruchkontakten ange- wandt [Science 2015, 349, 1199-1202 (2015)]. Eine alternative Technik zur Spektroskopie der Andreev Zustände benötigt konventionelle Josephson-Kontakte in Kombination mit topologischen Kontakten. Die konventionellen Kontakte erlauben die Kontrolle der supra- leitenden Phase und dienen als Spektrometer. Die Andreev-Punktkontaktspektroskopie kann auf zweidimensionale topologische Isolatoren erweitert werden. Auch kann ei- ne supraleitende Schleife, welche die Kontrolle über die Phase und eine veränderbare Barriere ermöglicht, neue Einblicke in die Transportmechanismen geben. Solche Un- tersuchungen bieten Ansatzpunkte für die Lokalisierung von Majorana-Zuständen in
Quanten-Spin-Hall-Systemen.
|
20 |
Superconductivity at Graphite InterfacesBallestar, Ana 25 April 2014 (has links) (PDF)
The existence of superconductivity in graphite has been under discussion since the 1960s when it was found in intercalated graphitic compounds, such as C8K, C8Rb and C8Cs. However, it was only about 40 years ago when the existence of superconductivity in pure graphite came up. In this work we directly investigate the interfaces highly oriented pyrolytic graphite (HOPG) has in its inner structure, since they play a major role in the electronic properties. The results obtained after studying the electrical transport provide clear evidence on granular superconductivity localized at the interfaces of graphite samples. Zero resistance states, strong current dependence and magnetic field effect on the superconducting phase support this statement. Additionally, an abrupt reduction in the measured voltage at temperatures from 3 to 175 K has been observed. However, the upper value of this transition temperature seems to not have been reached yet. A possible method to enhance it is to increase the carrier density of graphite samples. In order to preserve to quasi-two-dimensional structure of highly oriented pyrolytic graphite, chemical doping has been dismissed in the frame of this work. We used an external electric field to move the Fermi level and, hence, try to trigger superconductivity in multi layer graphene samples. A drop on the resistance at around 17 K has been measured for a large enough electric field applied perpendicular to the graphene planes. This transition is strongly affected by magnetic field and only appeared at low temperatures. As a result of the studies included in this work, it appears clear that graphite has a superconducting phase located at certain interfaces with a very high transition temperature.
|
Page generated in 0.0449 seconds