11 |
Optical Properties of Plasmonic Zone Plate Lens, SERS-active Substrate and Infrared Dipole AntennaKim, Hyun Chul 2009 August 1900 (has links)
Nowadays plasmonics is rapidly developing areas from fundamental studies to
more application driven research. This dissertation contains three different research
topics on plasmonics. In the first research topic, by modulating the zone width of a
plasmonic zone plate, we demonstrate that a beam focused by a proposed plasmonic
zone plate lens can be achieved with higher intensity and smaller spot size than the
diffraction-limited conventional zone plate lens. This sub-diffraction focusing capability
is attributed to extraordinary optical transmission, which is explained by the complex
propagation constant in the zone regions afforded by higher refractive index dielectric
layer and surface plasmons. On the other hand, the resulted diffraction efficiency of this
device is relatively low. By introducing a metal/dielectric multilayered zone plate, we
present higher field enhancement at the focal point. This higher field enhancement
originates not only from surface plasmon polaritons-assisted diffraction process along
the propagation direction of the incident light (longitude mode), but also from multiple
scattering and coupling of surface plasmons along the metal/dielectric interface
(transverse mode). In the second research topic, we suggest a novel concept of SERS-active
substrate applications. The surface-enhanced Raman scattering enhancement factor
supported by gap surface plasmon polaritons is introduced. Due to higher effective
refractive index induced by gap surface plasmon polaritons in the spacer region between
two metal plates, incident light tends to localize itself mostly in the medium with higher
refractive index than its adjacent ones and thereby the lights can confine with larger field
enhancement.
In the last research topic, we offer a simple structure in which a gold dipole
antenna is formed on the SiC substrate. Surface phonon polaritons, counterparts of
surface plasmon polaritons in the mid-infrared frequencies, are developed. Due to the
synergistic action between the conventional dipole antenna coupling and the resonant
excitation of surface phonon polaritons, strong field enhancement in the gap region of
dipole antenna is attained.
Most of research topics above are expected to find promising applications such
as maskless nanolithography, high resolution scanning optical microscopy, optical data
storage, optical antenna, SERS-active substrate, bio-molecular sensing and highly
sensitive photo-detectors.
|
12 |
Organic/inorganic hybrid nanostructures for chemical plasmonic sensorsChang, Sehoon 30 March 2011 (has links)
The work presented in this dissertation suggests novel design of chemical plasmonic sensors which have been developed based on Localized Surface Plasmon Resonance (LSPR), and Surface-enhanced Raman scattering (SERS) phenomena. The goal of the study is to understand the SERS phenomena for 3D hybrid (organic/inorganic) templates and to design of the templates for trace-level detection of selected chemical analytes relevant to liquid explosives and hazardous chemicals. The key design criteria for the development of the SERS templates are utilizing selective polymeric nanocoatings within cylindrical nanopores for promoting selective adsorption of chemical analyte molecules, maximizing specific surface area, and optimizing concentration of hot spots with efficient light interaction inside nanochannels. The organic/inorganic hybrid templates are optimized through a comprehensive understanding of the LSPR properties of the gold nanoparticles, gold nanorods, interaction of light with highly porous alumina template, and the choice of physical and chemical attributes of the selective coating.
Furthermore, novel method to assemble silver nanoparticles in 3D as the active SERS-active substrate has been demonstrated by uniform, in situ growth of silver nanoparticles from electroless deposited silver seeds excluding any adhesive polymer layer on template. This approach can be the optimal for SERS sensing applications because it is not necessary to separate the Raman bands of the polyelectrolyte binding layer from those of the desired analyte. The fabrication method is an efficient, simple and fast way to assemble nanoparticles into 3D nanostructures.
Addressable Raman markers from silver nanowire crossbars with silver nanoparticles are also introduced and studied. Assembly of silver nanowire crossbar structure is achieved by simple, double-step capillary transfer lithography. The on/off SERS properties can be observed on silver nanowire crossbars with silver nanoparticles depending on the exact location and orientation of decorated silver nanoparticles nearby silver nanowire crossbars.
As an alternative approach for the template-assisted nanostructure design, porous alumina membrane (PAM) can be utilized as a sacrificial template for the fabrication of the nanotube structure. The study seeks to investigate the design aspects of polymeric/inorganic hybrid nanotube structures with plasmonic properties, which can be dynamically tuned by external stimuli such as pH.
This research suggests several different organic/inorganic nanostructure assemblies by various template-assisted techniques. The polymeric/inorganic hybrid nanostructures including SERS property, pH responsive characteristics, and large surface area will enable us to understand and design the novel chemical plasmonic sensors.
|
13 |
Nanofabrication and its application in plasmonic chemical and bio-sensorsZhang, Jian January 2014 (has links)
This thesis is focused on nanofabrication and its application in plasmonic chemical and bio- sensors. The contribution thus is the development of novel nanofabrication techniques and nano- structures for the sensors based on surface plasmon (SP).
Part I (Chapter 1-3) is about novel nanofabrication techniques, especially nanoimprint lithography (NIL) and electron beam lithography (EBL). For NIL, the four major aspects of NIL were discussed, including the resist, mold, imprint process and equipment for NIL. Combined with NIL and soft lithography, hybrid nanoimprint-soft lithography was investigated. To overcome the difficulty of mold fabrication, a more robust solution of mold fabrication through a sacrificial poly(dimethyl glutarimide) (PMGI) master mold was designed in this work. Based on this method, the mold was fabricated without structure distortion, and pattern replication with sub-10 nm resolution was demonstrated. For EBL, several aspects were discussed to improve the performance of EBL, including the resist, development, and exposure condition. The charging effect to the pattern distortion was studied systemically for the electron beam exposure in large area with high current (>nA). Tilted periodic nanostructure was achieved by electron beam scanning on tilted sample with dynamic focus mode. EBL on irregular surface was realized by the exposure on evaporated polystyrene.
Part II (Chapter 4-6) is the application in surface plasmonic chemical and bio-sensors. The first type of sensors is surface enhanced Raman scattering (SERS) sensor based on localized SP. Bowtie-shape nano-antenna structures of sub-10 nm gap were fabricated with the breakthrough of EBL resolution to 3 nm by exposing resist on Si3N4 membrane. By controlling the gap size during lithography, the surface plasmon enhancement was tuned accurately. High sensitivity of Au bowties antenna with sub-10 nm gap was achieved at low concentration of the target molecule (10^-7 mM, 1,2-di(4-pyridyl)ethylene in ethanol solution) and high enhancement of 10^7 resulting from the corresponding bowtie structure.
The second type of sensors is extraordinary optical transmission (EOT) sensor based on propagating SP. The process of double liftoff was developed for the fabrication of nano-hole arrays on 100 nm-thick Au film utilizing EBL. This technique is versatile for the fabrication of many kinds of high-aspect-ratio noble metal structures. Additionally, annealing method was employed in this work to improve the smoothness of Au film. It was found that the RMS roughness of the deposited film was reduced by 72 % and the sensitivity was increased by 32 nm/RIU as a result of annealing. It was also found that the optical transmission intensity of the annealed NHA of similar hole diameter was increased more than twice which is due to the smaller absorption/scattering of the incident light and surface waves from the Au film surface. Besides the double liftoff process, several techniques were developed for EOT structures, including electroplating, imprint method, and deposition on membrane.
|
14 |
Advanced SERS Sensing System With Magneto-Controlled Manipulation Of Plasmonic NanoprobesKhoury, Christopher G. January 2012 (has links)
<p>There is an urgent need to develop practical and effective systems to detect diseases, such as cancer, infectious diseases and cardiovascular diseases.</p><p>Nanotechnology is a new, maturing field that employs specialized techniques to detect and diagnose infectious diseases. To this end, there have been a wealth of techniques that have shown promising results, with fluorescence and surface-enhanced Raman scattering being two important optical modalities that are utilized extensively. The progress in this specialized niche is staggering and many research groups in academia, as well as governmental and corporate organizations, are avidly pursuing leads which have demonstrated optimistic results.</p><p>Although much fundamental science is still in the pipeline under the guise of both ex-vivo and in-vivo testing, it is ultimately necessary to develop diagnostic devices that are able to impact the greatest number of people possible, in a given population. Such systems make state-of-the-art technology platforms accessible to a large population pool. The development of such technologies provide opportunities for better screening of at-risk patients, more efficient monitoring of disease treatment and tighter surveillance of recurrence. These technologies are also intrinsically low cost, facilitating the large scale screening for disease prevention.</p><p>Fluorescence has long been established as the optical transduction method of choice, because of its wealth of available dyes, simple optical system, and long heritage from pathology. The intrinsic limitations of this technique, however, have given rise to a complementary, and more recent, modality: surface-enhanced Raman scattering (SERS). There has been an explosive interest in this technique for the wealth of information it provides without compromising its narrow spectral width.</p><p>A number of novel studies and advances are successively presented throughout this study, which culminate to an advanced SERS-based platform in the last chapter.</p><p>The finite element method algorithm is critically evaluated against analytical solutions as a potential tool for the numerical modeling of complex, three-dimensional nanostructured geometries. When compared to both the multipole expansion for plane wave excitation, and the Mie-theory with dipole excitation, this algorithm proves to provide more spatially and spectrally accurate results than its alternative, the finite-difference time domain algorithm.</p><p>Extensive studies, both experimental and numerical, on the gold nanostar and Nanowave substrate for determining their potential as SERS substrates, constituted the second part of this thesis. The tuning of the gold nanostar geometry and plasmon band to optimize its SERS properties were demonstrated, and significant 3-D modeling was performed on this exotic shape to correlate its geometry to the solution's exhibited plasmon band peak position and large FWHM. The Nanowave substrate was experimentally revived and its periodic array of E-field hotspots, which was until recently only inferred, was finally demonstrated via complex modeling.</p><p>Novel gold- and silver- coated magnetic nanoparticles were synthesized after extensive tinkering of the experimental conditions. These plasmonics-active magnetic nanoparticles were small and displayed high stability, were easy to synthesize, exhibited a homogeneous distribution, and were easily functionalizable with Raman dye or thiolated molecules.</p><p>Finally, bowtie-shaped cobalt micromagnets were designed, modeled and fabricated to allow the controllable and reproducible concentrating of plasmonics-active magnetic nanoparticles. The external application of an oscillating magnetic field was accompanied by a cycling of the detected SERS signal as the nanoparticles were concentrated and re-dispersed in the laser focal spot. This constituted the first demonstration of magnetic-field modulated SERS; its simplicity of design, fabrication and operation opens doors for its integration into diagnostic devices, such as a digital microfluidic platform, which is another novel concept that is touched upon as the final section of this thesis.</p> / Dissertation
|
15 |
Engineering Gold Nanorod-Based Plasmonic Nanocrystals for Optical ApplicationsHuang, Jianfeng 09 1900 (has links)
Plasmonic nanocrystals have a unique ability to support localized surface plasmon resonances and exhibit rich and intriguing optical properties. Engineering plasmonic nanocrystals can maximize their potentials for specific applications. In this dissertation, we developed three unprecedented Au nanorod-based plasmonic nanocrystals through rational design of the crystal shape and/or composition, and successfully demonstrated their applications in light condensation, photothermal conversion, and surface-enhanced Raman spectroscopy (SERS). The “Au nanorod-Au nanosphere dimer” nanocrystal was synthesized via the ligand-induced asymmetric growth of a Au nanosphere on a Au nanorod. This dimeric nanostructure features an extraordinary broadband optical absorption in the range of 400‒1400nm, and it proved to be an ideal black-body material for light condensation and an efficient solar-light harvester for photothermal conversion. The “Au nanorod (core) @ AuAg alloy (shell)” nanocrystal was built through the epitaxial growth of homogeneously alloyed AuAg shells on Au nanorods by precisely controlled synthesis. The resulting core-shell structured, bimetallic nanorods integrate the merits of the AuAg alloy with the advantages of anisotropic nanorods, exhibiting strong, stable and tunable surface plasmon resonances that are essential for SERS applications in a corrosive environment. The “high-index faceted Au nanorod (core) @ AuPd alloy (shell)” nanocrystal was produced via site-specific epitaxial growth of AuPd alloyed horns at the ends of Au nanorods. The AuPd alloyed horns are bound with high-index side facets, while the Au nanorod concentrates an intensive electric field at each end. This unique configuration unites highly active catalytic sites with strong SERS sites into a single entity and was demonstrated to be ideal for in situ monitoring of Pd-catalyzed reactions by SERS. The synthetic strategies developed here are promising towards the fabrication of novel plasmonic nanocrystals with fascinating properties for nanoplasmonics and nanophotonics.
|
16 |
Trace Analysis of Biological Compounds by Surface Enhanced Raman Scattering (SERS) SpectroscopyBoddu, Naresh K. 17 December 2008 (has links)
No description available.
|
17 |
Development of Gold Nanocluster-Based BiosensorsZhou, Xinzhe 01 October 2015 (has links)
Gold nanoclusters possess both theoretical and practical importance in the development of ultrasensitive biosensors based on surface-enhanced Raman spectroscopy (SERS). Manipulation of gold nanoclusters in a predictable and reproducible manner for the application of refined biochemical analysis still remains challenging. In this study, high-purity gold nanoclusters are isolated via a simple method based on density gradient centrifugation. Three distinct bands including monomers, small aggregates (2-4 nanospheres), and large aggregates (>5 nanospheres) can be separated via density gradient centrifugation. The isolated gold nanoclusters greatly enhance the Raman intensity of the trapped dye molecules such that single nanocluster detection is feasible. To develop a gold nanoparticle-based biosensor for influenza virus, effort was also made to modify recognition moieties such as aptamers to gold nanoparticles via distinct approaches. The increase of hydraulic diameter and the shift of optical absorbance spectrum indicate the success of surface modification to gold nanoparticles. / Master of Science
|
18 |
Lipid Bilayers as Surface Functionalizations for Planar and Nanoparticle BiosensorsIp, Shell Y. 05 December 2012 (has links)
Many biological processes, pathogens, and pharmaceuticals act upon, cellular membranes. Accordingly, cell membrane mimics are attractive targets for biosensing, with research, pathology, and pharmacology applications. Lipid bilayers represent a versatile sensor functionalization platform providing antifouling properties, and many receptor integration options, uniquely including transmembrane proteins. Bilayer-coated sensors enable the kinetic characterization of membrane/analyte interactions. Addressed theoretically and experimentally is the self-assembly of model membranes on plasmonic sensors. Two categories of plasmonic sensors are studied in two parts. Part I aims to deposit raft-forming bilayers on planar nanoaperture arrays suitable for multiplexing and device integration. By vesicle fusion, planar bilayers are self-assembled on thiol-acid modified flame-annealed gold without the need for specific lipid head-group requirements. Identification of coexisting lipid phases is accomplished by AFM imaging and force spectroscopy mapping. These methods are successfully extended to metallic, plasmon-active nanohole arrays, nanoslit arrays and annular aperture arrays, with coexisting phases observed among the holes. Vis-NIR transmission spectra of the arrays are measured before and after deposition, indicating bilayer detection. Finally, the extraction of membrane proteins from cell cultures and incorporation into model supported bilayers is demonstrated. These natural membrane proteins potentially act as lipid-bound surface receptors. Part II aims to encapsulate in model lipid bilayers, metallic nanoparticles, which are used as probes in surface enhanced Raman spectroscopy. Three strategies of encapsulating particles, and incorporating Raman-active dyes are demonstrated, each using a different dye: malachite green, rhodamine-PE, and Tryptophan. Dye incorporation is verified by SERS and the bilayer is visualized and measured by TEM, with support from DLS and UV-Vis spectroscopy. In both parts, lipid-coated sensors are successfully fabricated and characterized. These results represent important and novel solutions to the functionalization of plasmonic surfaces with biologically relevant cell membrane mimics.
|
19 |
Label-free plasmonic detection using nanogratings fabricated by laser interference lithographyHong, Koh Yiin 02 January 2017 (has links)
Plasmonics techniques, such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), have been widely used for chemical and biochemical sensing applications. One approach to excite surface plasmons is through the coupling of light into metallic grating nanostructures. Those grating nanostructures can be fabricated using state-of-the-art nanofabrication methods. Laser interference lithography (LIL) is one of those methods that allow the rapid fabrication of nanostructures with a high-throughput. In this thesis, LIL was combined with other microfabrication techniques, such as photolithography and template stripping, to fabricate different types of plasmonic sensors. Firstly, template stripping was applied to transfer LIL-fabricated patterns of one-dimensional nanogratings onto planar supports (e.g., glass slides and plane-cut optical fiber tips). A thin adhesive layer of epoxy resin was used to facilitate the transfer. The UV-Vis spectroscopic response of the nanogratings supported on glass slides demonstrated a strong dependency on the polarization of the incident light. The bulk refractive index sensitivities of the glass-supported nanogratings were dependent on the type of metal (Ag or Au) and the thickness of the metal film. The described methodology provided an efficient low-cost fabrication alternative to produce metallic nanostructures for plasmonic chemical sensing applications. Secondly, we demonstrated a versatile procedure (LIL either alone or combined with traditional laser photolithography) to prepare both large area (i.e. one inch2) and microarrays (μarrays) of metallic gratings structures capable of supporting SPR excitation (and SERS). The fabrication procedure was simple, high-throughput, and reproducible, with less than 5 % array-to-array variations in geometrical properties. The nanostructured gold μarrays were integrated on a chip for SERS detection of ppm-level of 8-quinolinol, an emerging water-borne pharmaceutical contaminant. Lastly, the LIL-fabricated large area nanogratings have been applied for SERS detection of the mixtures of quinolone antibiotics, enrofloxacin, an approved veterinary antibiotic, and one of its active metabolite, ciprofloxacin. The quantification of these analytes (enrofloxacin and ciprofloxacin) in aqueous mixtures were achieved by employing chemometric analysis. The limit of quantification of the method described in this work is in the ppm-level, with <10 % SERS spatial variation. Isotope-edited internal calibration method was attempted to improve the accuracy and reproducibility of the SERS methodology. / Graduate / 2018-02-17
|
20 |
Síntese e funcionalização de nanopartículas de ouro utilizando um modelo de substância húmica comercial / Synthesis and functionalization of gold nanoparticles using a commercial model of humic substanceCintia Regina Petroni 24 May 2013 (has links)
Corantes orgânicos são uma importante classe de poluentes ambientais, sendo que a natureza da interação de tais espécies com ácidos húmicos determina seu comportamento e destino ambiental. Este trabalho investiga abordagens diferentes para a síntese de nanopartículas de ouro-ácido húmico (NPs Au/AH), o desempenho destas partículas como sensores para a determinação de traço de corantes orgânicos e da natureza da sua interação química com ácidos húmicos por técnicas de espectroscopia Raman intensificada por superfície (surface-enhanced Raman scattering, SERS). As nanopartículas de ouro foram obtidas de forma direta em meio aquoso. A síntese foi realizada na presença de ácido húmico em vários valores de pH e na presença e na ausência de citrato de sódio. Nesta abordagem, o ácido húmico apresenta propósitos diferentes. Na síntese das nanopartículas, ele serve como agente redutor e para a estabilização da superfície, impedindo a coalescência das nanopartículas em meio aquoso. Considerando-se a utilização de nanopartículas como substratos SERS-ativos, o ácido húmico serve como uma fase de extração associada com a plataforma SERS, favorecendo a interação dos corantes orgânicos com as nanopartículas metálicas. Esta abordagem pode ser utilizada para aumentar a sensibilidade e seletividade da técnica SERS e evitar a interferência de outras espécies em solução. É também importante mencionar que o ácido húmico dá origem a um espectro Raman muito fraco e, portanto, não interfere de forma significativa na detecção espectroscópica das espécies de interesse. As NPs Au/AH obtidas foram caracterizadas por espectroscopia eletrônica, microscopia eletrônica de varredura e SERS, a fim de estabelecer uma correlação entre a sua morfologia, plasmon superficial, e seu uso potencial como substratos SERS. As NPs Au/AH foram utilizadas como substratos SERS no estudo de corantes têxteis aniônicos e catiônicos. Os espectros Raman, nestes casos, foram atribuídos ao complexo formado pelo ácido húmico e cada uma das espécies de interesse. Os resultados obtidos revelaram uma dependência significativa entre as propriedades morfológicas e eletrônicas das NPs Au/AH com o procedimento de síntese, e também uma interação preferencial entre as nanopartículas e os corantes catiônicos. Conclui-se que as NPs Au/AH podem proporcionar uma abordagem útil para a caracterização espectroscópica de espécies relevantes para o ambiente e sua interação química com os ácidos húmicos, através do uso da espectroscopia Raman intensificada pela superfície / Organic dyes are an important class on environmental pollutants, and the nature of the interaction of such species with humic acid strongly determines their environmental behavior and fate. This work investigates different approaches for the synthesis of humic acid-gold nanoparticles (HA-AuNP), the performance of these particles as sensors for trace determination of organic dyes and the nature of their chemical interaction with humic acids by surface-enhanced Raman scattering (SERS). The Au nanoparticles were obtained by direct fabrication in aqueous media.The synthesis were carried out in the presence of humic acid at various pH values, and in the presence and absence of sodium citrate. In this approach, humic acid serves different purposes. In the synthesis of the nanoparticles, they serve as reducing agent and for surface stabilization, preventing coalescence of the nanoparticles in aqueous media. Considering the use of the nanoparticles as SERSactive substrates, the humic acid serves as an extraction phase associated with the SERS platform, favoring the interaction of the organic dyes with the metallic nanoparticles. This approach can be used to enhance the sensitivity and selectivity of SERS technique and avoid interference from other species in solution. It is also important to mention that the humic acid gives rise to a very weak Raman spectrum, and therefore does not interfere significantly in the spectroscopic detection of the species of interest. The obtained HA-AuNPs were characterized by electronic spectroscopy, scanning electron microscopy and SERS, in order to establish a correlation between their morphology, surface plasmon, and their potential use as SERS platforms. The HA-AuNPs have been applied as SERS substrates for anionic and cationic textile dyes. The recorded Raman spectra are, in these cases, assigned to the complex formed by the humic acid and each of the species of interest. The obtained results revealed a significant dependence on the morphological and electronic properties of the HA-AuNPs with the synthesis procedure, and also a strong interaction between the nanoparticles and cationic dies. We conclude that HA-AuNP may provide a valuable approach for the spectroscopic characterization of environmentally relevant species and their chemical interaction with humic acids, through the use of surface enhanced Raman spectroscopy
|
Page generated in 0.1104 seconds