• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of Digital Holography in Direct Phase Retrieval Using Transport of Intensity and in 3D Surface Feature Extraction

Zhou, Haowen 18 May 2021 (has links)
No description available.
2

Engineering the Uniform Lying Helical Structure in Chiral Nematic Liquid Crystal Phase: From Morphology Transition to Dimension Control

Jia, Zhixuan 05 1900 (has links)
Chiral nematic liquid crystals or cholesteric liquid crystals (CLC) can be obtained by adding a chiral dopant into a nematic liquid crystal. Liquid crystal molecules spontaneously rotate along a long axis to form helical structures in CLC system. Both pitch size and orientation of the helical structure is determined by the boundary conditions and can be further tuned by external stimuli. Particularly, the uniform lying helical structure of CLC has attracted intensive attention due to its beam steering and diffraction abilities. Up to now, studies have worked on controlling the in-plane orientation of lying helix through surface rubbing and external stimuli. However, it remains challenging to achieve steady and uniform lying helical structure due to its higher energy, comparing with other helical configurations. Here, by varying the surface anchoring, uniform lying helical structure with long-range order is achieved as thermodynamically stable state without external support. Poly (6-(4-methoxy-azobenzene-4'-oxy) hexyl methacrylate) (PMMAZO), a liquid crystalline polymer, is deposited onto the silicon substrate to fine-tune the surface anchoring. By changing the grafting density of PMMAZO, both pitch size and orientation of lying helical structure are precisely controlled. As the grafting density increases, the enhanced titled deformation of helical structure suppresses the pitch size of CLC at the same cell thickness; as the cell thickness increases, the morphology transition from long-range order stripe to small fingerprint domain is facilitated.
3

Vibration-Based Terrain Classification for an Autonomous Truck / Vibrationsbaserad Terränigenkänning för en Autonom Lastbil

Lovén, Lucas January 2022 (has links)
This thesis is focused on developing vibration based terrain classification for an autonomous mining truck. The goal is to classify between good and bad gravel roads as well as good and bad asphalt roads. Current literature within vibration based terrain classification has been focused to a great extent on smaller research vehicles. On smaller research vehicles have roll-rate, pitch-rate and vertical acceleration been reported to yield the highest average classification rates. Common approaches for pre-processing the data consists of segmenting the data, apply filtering techniques, computing the Power Spectra Density (PSD), performing Principal Component Analysis (PCA) and compute the logarithms. How to do this specifically for an Autonomous Truck (AT) is not trivial. What signals from the trucks Internal Measurement Unit (IMU)s yields the highest average classification rates? How does one process the raw data in the best way, and what classification method performs the best for this for an AT? The AT studied here have five different IMUs that all measure ẍ, ÿ, z̈ acceleration, and ωroll, ωpitch, ωyaw rotational speed. One is located in the cab, and the other four are located in each of the four corners of the chassis. With these sensors empirical vibration data from different surfaces, speeds and loads was gathered with multiple identically equipped autonomous mining trucks. With this data were experiments conducted in order to find a high performing classifier that also was possible to implement in the ATs software in C++. The different signals were ranked according to the highest classification score, and different pre-processing parameters combined with different classification methods likewise were. ωyaw and ωpitch from the cab IMU, and z̈ from the rear right IMU were the ones that yielded the highest average classification rates. The pre-processing consists of segmenting the data, multiplying the segment with a window function, compute the one-sided PSD, logarithmize the PSD values and lastly normalize the data. A bagged classifier based on Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel showed the highest classification performance. The final multiclass classifier was a combination of three of these bagged classifiers in a tree structure. The F-measure rates for the four classes were {0.946, 0.98, 0.714, 0.879}. / Denna uppsats är fokuserad på att utveckla en vibrationsbaserad terrängigenkänningsalgoritm för en automatiserad tung lastbil som kommer att framföras i ojämn terräng, som ska klara av att känna igen bra och dåliga grusvägar, samt bra och dåliga asfaltsvägar. Befintlig litteratur inom området vibrationsbaserad terrängigenkänning har varit fokuserad i stor utsträckning på mindre forskningsfordon. På dessa är {ωrull, ωstigning, z̈} de signaler som resulterar i de högsta genomsnittliga korrekta terrängklassifikationerna. Befintliga förbearbetningmetoder för datan består i majoriteten av fallen av att segmentera och filtrera datan, beräkna spektrala effekttätheten (PSD) och logaritmera. Hur man gör detta är inte trivialt. Vilka signaler från lastbilens fem IMUer resulterar i det högsta prestandan för terrängigenkänning? Hur förarbetar man datan? Lastbilen studerad här har fem IMUer som har sex kanaler vardera, de mäter ẍ, ÿ, z̈ acceleration, och ωrull, ωstigning, ωgir rotationshastighet. En är placerad i lastbilens hytt och de andra fyra är placerade i varje hörn på chassit. Med dessa sensorer samlades vibrationsdata in på de fyra underlagen, med olika lastbilar, med olika last på flaket och med olika autonoma lastbilar, men som var konfigurerade på samma sätt. Experiment utfördes för att bestämma vilka signaler-, vilken förbearbetningsmetod på datan- samt vilken klassifieringsmetod som presterar bäst för den automatiserade lastbilen. Algoritmen var också anpassad för att vara möjlig att implementera i lastbilens mjukvara utan externa maskininlärnings bibliotek. De högst presterande signalerna var ωgir och ωstigning från IMUn i hytten, samt z̈ från IMUn monterad i chassits bakre högra hörn. Förbearbetningen bestod av att segmentera datasignalen, multiplicera den med en fönsterfunktion för att sedan beräkna den ensidiga spektrala effekttätheten (PSD), logaritmera alla värden och till slut normalisera datan. En stödvektormaskin (SVM) med en RBF kärna påvisade högst genomsnittliga klassifikationsresultat. Den slutgiltiga binära klassifieraren applicerade bagging för att förbättra prestandan genom att kombinera data från alla de tre högst presterande signalerna. Den slutgiltiga klassifieraren tränades på att skilja mellan de olika underlagen och var en kombination av tre bagged klassifierare i en trädstruktur. Prestandan med avseende på F-Measure för de fyra klasserna var {0.946, 0.98, 0.714, 0.879}.

Page generated in 0.1318 seconds