• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 18
  • 6
  • 1
  • 1
  • Tagged with
  • 134
  • 134
  • 24
  • 21
  • 21
  • 21
  • 16
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Surface Characterization of Heterogeneous Catalysts Using Low Energy Ion Scattering Spectroscopy Combined with Electrochemistry

Axnanda, Stephanus R. 2009 December 1900 (has links)
Fundamental studies of heterogeneous catalysis were performed and presented in this dissertation to gain a better understanding of heterogeneous catalytic reactions at a molecular level. Surface science techniques were employed in achieving the goal. Low energy ion scattering spectroscopy (LEISS) is the main surface science technique which will be used in all the studies discussed throughout this dissertation. The main objectives of LEISS measurements are to: 1) obtain the information of surface composition of heterogeneous catalysts from the topmost layer; 2) observe the effects of reaction conditions on the surface composition of heterogeneous catalysts. The surface composition and morphology of Au-Pd clusters bimetallic model catalysts supported on SiO2 were characterized using LEISS, infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). It is observed that relative to the bulk, the surface of the clusters is enriched in Au. Ethylene adsorption and dehydrogenation show a clear structure-reactivity correlation with respect to the structure/composition of these Au-Pd model catalysts. Fundamental studies of heterogeneous catalysis were performed and presented in this dissertation to gain a better understanding of heterogeneous catalytic reactions at a molecular level. Surface science techniques were employed in achieving the goal. Low energy ion scattering spectroscopy (LEISS) is the main surface science technique which will be used in all the studies discussed throughout this dissertation. The main objectives of LEISS measurements are to: 1) obtain the information of surface composition of heterogeneous catalysts from the topmost layer; 2) observe the effects of reaction conditions on the surface composition of heterogeneous catalysts. The surface composition and morphology of Au-Pd clusters bimetallic model catalysts supported on SiO2 were characterized using LEISS, infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). It is observed that relative to the bulk, the surface of the clusters is enriched in Au. Ethylene adsorption and dehydrogenation show a clear structure-reactivity correlation with respect to the structure/composition of these Au-Pd model catalysts.
52

Chemisorption of Aromatic Compounds on Well-Defined Palladium Surfaces: Studies by Electron Spectroscopy and Electrochemistry

Li, Ding 2010 August 1900 (has links)
The chemisorption of aromatic compounds, derivatized with different functional groups, on well-defined Pd(111) surfaces was studied by a combination of Auger electron spectroscopy (AES), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS), and electrochemistry (EC). The results of this work led to the following trends and conclusions: (a) At low concentrations, 2,5-dihydroxythiophenol (DHT) chemisorbs on a Pd surface through both diphenolic ring and thiol group. At high concentrations, it chemisorbs only through the thiol group. (b) There is extensive intermolecular attraction between the co-adsorbed thiolated quinone and thiolated hydroquinone molecules. The interaction occurs through the Pd substrate and not through space. (c) The chemisorption properties of Nheteroaromatic compounds are pH-dependent. When the nitrogen heteroatom is protonated, it becomes very weakly surface-active. When the nitrogen heteroatom is deprotonated, surface activity stronger than the diphenolic ring is exhibited. (d) On a palladium surface, the binding strengths of ligands increase in the order: phenyl ring < quinonoid ring, < N-heteroatom < I < -SH.
53

Micro- and nano- scale experimental approach to surface engineer metals

Asthana, Pranay 17 September 2007 (has links)
This thesis includes two parts. The first part reviews the history and fundamentals of surface science and tribology. The second part presents the major research outcomes and contributions. This research explores the aspects of friction, wear, and surface modification for tribological augmentation of surfaces. An effort has been made to study these aspects through gaining insights by fundamental studies leading to specific practical applications in railroads. The basic idea was to surface engineer metals for enhanced surface properties. A micro- and nano- scale experimental approach has been used to achieve these objectives. Novel principles of nano technology are incorporated into the experiments. Friction has the potential to generate sufficient energy to cause surface reactions through high flash temperatures at the interface of two materials moving in relative motion. This allows surface modifications which can be tailored to be tribologically beneficial through a controlled process. The present work developed a novel methodology to generate a functional tribofilm that has combined properties of high hardness and high wear resistance. A novel methodology was implemented to distinguish sliding/rolling contact modes during experiments. Using this method, a super hard high-performance functional tribofilm with “regenerative” properties was formed. The main instrument used in this research for laboratory experiments is a tribometer, using which friction, wear and phase transformation characteristics of railroad tribo-pairs have been experimentally studied. A variety of material characterization techniques have been used to study these characteristics at both micro and nano scale. Various characterization tools used include profilometer, scanning electron microscope, transmission electron microscope, atomic force microscope, X-ray diffractometer, nanoindenter, and X-ray photon spectroscope. The regenerative tribofilms promise exciting applications in areas like gas turbines, automotive industry, compressors, and heavy industrial equipment. The outcome of this technology will be an economical and more productive utilization of resources, and a higher end performance.
54

Domain Boundaries of the 5x5 DAS Reconstruction

Mark, Andrew Gonchee 11 November 2011 (has links)
Steps on surfaces have long been explored for their own sake, and exploited as growth mediators. However, another type of linear surface defect - the domain boundary - has been largely neglected. Here we introduce domain boundaries of the 5x5 dimer-adatom-stacking fault reconstruction, explore their properties and demonstrate that they too can be used to mediate growth in a useful manner. When a thin layer of Ge is grown on Si(111) lattice strain induces the overlayer to reconstruct as Ge5x5. Using solid phase epitaxy, many domains of 5x5 can be grown. The domain interiors have excellent order, and with careful annealing, the boundaries that separate them are straight and uniform. Well-ordered boundaries propagate along the two high symmetry directions <1 -1> or <1 1> and are called A-type or B-type respectively. Boundaries of the second type are unique to Ge5x5. Registration with the substrate restricts the misfit between domains to discrete possibilities which are labeled according to a modified version of the system used for domain boundaries of Si(111)7x7. The distribution of observed boundary types is strongly peaked and reflects the relative energies of boundaries of different character. The expanded labeling scheme can be used to sketch the kinetic processes which lead to the distribution peaks. The dominant boundary by far is the one known as B[-2 2], which accounts for almost half of all observed boundaries. The atomic structure for this type of boundary has been established as a truncated 7x7 unit cell. Thus, these boundaries are linear arrays of quasi-7x7 embedded in a sea of 5x5. On the Si(111)7x7 surface the Group 13 elements, when deposited at sub-ML coverages and low temperatures, form magic clusters. The perfect uniformity and precise registration that earns them the moniker ‘magic’ make these clusters unusual among self-organized atomic scale objects. The clusters that form on 5x5 lack the uniformity of their counterparts on 7x7. However, with many domains, deposited In or Ga segregate to the quasi-7x7 B[-2 2] boundaries and there form magic clusters. The boundary thus acts as a template for growing straight lines of precisely spaced, atomically identical, nanoscale clusters. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-07-29 08:50:16.874
55

High Throughput Study of the Structure Sensitive Decomposition of Tartaric and Aspartic Acid on Surfaces Vicinal to Cu(111) and Cu(100)

Reinicker, Aaron D. 01 April 2015 (has links)
There are many reactions that are sensitive to the surface structure of a catalyst. In order to obtain a comprehensive understanding of structure sensitive surface chemistry we use Surface Structure Spread Single Crystals (S4Cs) that expose a continuous distribution of crystal planes across their surfaces. Those crystal planes that lack mirror symmetry contain terraces, monatomic steps, and kinks and can be described as chiral with an R or an S orientation. When coupled with spatially resolved surface analysis techniques, S4Cs can be used to study the effects of surface structure and chirality on surface chemistry across a continuous distribution of crystal planes. A set of six Cu S4Cs has been created that spans all possible crystal planes of Cu. The Cu(111) S4C was used to study the structure sensitivity of L- and D-tartaric acid (TA) decomposition and the Cu(100) S4C was used to study the structure sensitivity of L-4-13C and D-aspartic acid (AA) decomposition. Isothermal Temperature Programmed Reaction Spectroscopy (TPRS) was implemented in which the S4Cs with monolayers of TA and AA were held at a temperature below the temperature of peak decomposition observed in a standard TPR experiment (heating at 1 K/s). At various times during isothermal heating, the surface was cooled to quench the reaction. Spatially resolved X-ray Photoelectron Spectroscopy (XPS) was performed to identify those regions on the surface in which the adsorbates had decomposed and those in which they were still intact. On the Cu(111) S4C which exposes both (100) and (110) step edges, TA decomposition is most sensitive to the density of (100) steps. AA decomposition on the Cu(100) S4C was enantioselective: L-AA-4-13C decomposed on S surfaces before R surfaces while D-AA decomposed on R surfaces before S surfaces. The decomposition of CH3CH2OH, CD3CD2OD, and CF3CH2OH on Zn was studied using temperature programmed reaction spectroscopy (TPRS). The decomposition products of each reaction were determined and a reaction mechanism was proposed for CH3CH2OH decomposition based on the product ratios and peak temperature locations. The CH3CH2OH decomposition mechanism includes the formation of two intermediate species on the surface: CH3CH2- to form CH2=CH2 and CH3CH2O- to form CH3CH=O.
56

Vibrational Sum Frequency Spectroscopic Investigations of Sulfur Dioxide Adsorption to Atmospherically Relevant Aqueous Surfaces

Ota, Stephanie Tomoko, 1978- 06 1900 (has links)
xv, 108 p. : ill. (chiefly col.) / Aqueous aerosol surfaces are an important platform for chemical reactions through which gases are transported in the atmosphere. The chemical complexity of aqueous aerosols is well-established, but many questions remain about the molecular nature of their surfaces, particularly with respect to the uptake of gases. The pollutant sulfur dioxide, SO<sub>2</sub>, has been implicated in environmental phenomena such as acid rain, climate change, and cloud formation. SO<sub>2</sub> is fundamentally interesting because it forms spectroscopically identifiable complexes with water at aqueous surfaces. This dissertation aims to understand how temperature and aqueous composition impact the formation of surface complexes between water and SO<sub>2</sub>. Vibrational sum frequency spectroscopy (VSFS), a surface specific technique, is used to probe the vibrational modes of water and small organic molecules, investigating changes to the overall orientation, bonding environment, and structure of interfaces when aqueous surfaces are exposed to SO<sub>2</sub>. SO<sub>2</sub> adsorption to water at tropospherically relevant temperatures (0--23 °C) is examined first. The results show enhanced SO<sub>2</sub> surface affinity at colder temperatures, with most of the topmost water molecules showing evidence of binding to SO<sub>2</sub> at 0 °C compared to a much lower fraction at room temperature. Surface adsorption results in significant changes in water orientation at the surface but is reversible at the temperatures examined. The surface and vibrational specificity of these studies can be used to distinguish between the effects of surface adsorption compared to bulk accommodation. This distinction is utilized to demonstrate that SO<sub>2</sub> complexation is independent of solution acidity, confirming that bulk absorption is unnecessary for surface adsorption to occur. Finally, the impact of the organic species succinic acid and formaldehyde on the formation of surface SO<sub>2</sub> complexes is examined. These experiments indicate that SO<sub>2</sub> surface complexation occurs primarily with water but that surface active organic species may interact with gases under certain circumstances, namely when the organic species are more chemically reactive towards the gas. These studies have important implications for atmospheric chemistry and the uptake of gases, particularly in the complex aqueous environments expected in the troposphere. / Committee in charge: Dr. Paul C. Engelking, Chair; Dr. Geraldine L. Richmond, Advisor Dr. Jeffrey A. Cina, Member; Dr. Thomas R. Dyke, Member; Dr. Alan D. Johnston, Outside Member
57

Synchrotron studies of TiO2 single crystal surfaces

Treacy, Jon January 2014 (has links)
Titanium dioxide (TiO2) is an abundant, inexpensive and non-toxic material that is most commonly used as a white pigment in paints. Since the discovery by Fujishima and Honda in 1972 that water splits into hydrogen and oxygen gas at the surface of TiO2 on exposure to sunlight, there has been a massive research effort into understanding and improving the photoactivity of TiO2. One aspect of this is the characterisation of so-called ‘model’ surfaces, i.e. very large single crystal faces with low levels of contamination at ultra high vacuum (UHV) pressures, allowing the study of a single structure with a minimum of unknown variables effecting experimental results. Two techniques that are used to probe surface structure, amongst many, are Surface X-ray Diffraction (SXRD) and Photoelectron Spectroscopy (PES). SXRD allows quantitative determination of surface structure with high precision, and PES reveals surface chemical composition. In the context of this thesis both of these techniques were exploited at synchrotron radiation sources, which produce light of high brightness. In addition, the development of routines for extraction of SXRD data from 2D detectors to allow SXRD analysis is described. SXRD is employed to probe the structure of anatase-TiO2(101) both in UHV and following immersion in water vapour. The optimum UHV structure is largely in agreement with that previously predicted computationally, although there are some discrepancies in terms of atomic displacements. Water immersion leads to a H2O/OH terminated surface. The surface structure of a rutile-TiO2(110)(1x1) surface, that had been prepared under non-UHV conditions, using a wet chemical preparation technique, is also determined with SXRD. The studied surface, which was highly hydrophilic, has a similar substrate termination to UHV-prepared rutile-TiO2(110)(1x1) but with adsorbed surface H2O/OH species. Finally, PES is used to gain insight into the O1s signature of surface bridging oxygens on rutile-TiO2(110), as well as those (if any) of oxygen adatoms. Concerning bridging oxygens, it is demonstrated that there is no discernable shift in the O1s core level for these atoms away from the bulk oxide peak. Regarding oxygen adatoms, no conclusive evidence of a distinct emission signal in the O1s core level or valence band spectra can be discerned, due to interference from carbon contamination.
58

XPS studies of surface ageing and discharge processes in polymeric insulators

Lunt, Patrick Joseph Brian January 2013 (has links)
The ageing of polymer insulation occurs under long-term exposure to high electric fields and has attracted research due its relevance to high voltage insulation. In this work, polymers that have been electrically aged via a number of methods have been investigated using X-ray photoelectron spectroscopy (XPS). Despite some use in the investigation of outdoor insulation surfaces, XPS has not been used for investigations of polymer bulk electrical ageing before now. The first XPS measurements, using both small spot analysis and XPS imaging, are presented from the exposed inner surfaces of electrically aged artificial voids and electrical breakdown channels, as well as corona discharge aged surfaces and spark discharge by-products. XPS is shown to be a valuable technique for the investigation of polymer electrical ageing. Investigations into breakdown channels are supported by data acquired using X-ray photoemission electron microscopy (XPEEM) and scanning electron microscopy (SEM).Results show that the chemistry present at these surfaces takes the form of significant oxidation over a wide area with localised production of graphitic carbon. C-O-, C=O, and O-C=O species are detected in all cases. It is found that similar ageing products are present regardless of the ageing process or material investigated. However, the level of oxidation and relative ratio of the species seen with XPS is shown to be highly dependant on oxygen availability. Greater intensity of carbon oxides, and a shift towards highly oxidised species, is observed when there is more oxygen in the system. XPS imaging of breakdown channels reveals that high concentrations of oxidised components form on the outer edges of the channel, with graphitic carbon forming in the central regions. In addition, evidence for degradation is seen to extend at least 300 μm from channels in XPS imaging and at least ~650 μm in XPS line scans. Variation with the applied discharge energy was investigated for breakdown channels and spark discharge ageing. Evidence is seen for an energy dependence on the breakdown products, with higher energies producing relatively higher graphitic carbon and reduced oxidation products. Further, the relationship between the applied voltage and graphitic carbon concentration suggests an activated process with an energy barrier before graphitic carbon formation starts. XPS observations are supported by confocal Raman microprobe spectroscopy (CRMS) results from artificial voids and electrical breakdown channels, which identify graphitic carbon on a fluorescent background as the main features. XPS data indicate oxidised species are the origin of the fluorescence seen and provides quantitative information on the levels, chemical states and spatial distribution of these species and of graphitic carbon.
59

Refining Vibrationally-Resonant Sum Frequency Generation Spectroscopy for Studies of Interfacial Interactions

Curtis, Alexander D. 09 May 2012 (has links) (PDF)
Many phenomena of interest to science and engineering occur at interfaces; however, access to, or discrimination of, interfacial interactions has been challenging, especially at buried interfaces. Vibrationally resonant sum-frequency generation (VR-SFG) spectroscopy is a powerful tool for investigating the molecular structure of free or buried interfaces, but spectral analysis has relied on many assumptions. To claim accurate new insights, practitioners must be able to make unique determinations from the data without experimental artifacts affecting the final results. For example, two independent and overlapping studies for the polystyrene/air interface were carried out, but reported different surface structures. Initially, this difference was attributed to the use of different substrates, but we have shown that the surface structure is independent of substrate by experimental suppression of the interfering nonresonant signal. These results show difficulties in SFG analysis that have led to faulty determinations of structural changes. Similar problems have been observed in systems assumed to have negligible nonresonant interference, demonstrating the need for proper experimental design instead of relying solely on post-experimental analysis of the data. We have investigated the inherent limitations imposed on the technique from the nature of the signal generation and nonresonant interference, and have developed methods to overcome such difficulties, depending on what is desired from the data. By nature of nonlinear spectroscopy, the desired frequency response is affected by overlapping interactions in the time domain, and these time domain interactions can be exploited to overcome challenges in analysis. By delaying the upconverting pulse, the nonresonant signal can be removed to enable accurate qualitative comparison or even quantify change; however this removal results in incomplete upconversion, or apodization, of the resonant signal, causing distortion in the observed resonant response. If absolute parameters are desired, additional work is necessary to correct the distortion of the resonant response. Correction can be accomplished by further exploiting time domain effects by collecting spectra at various delay times of the upconverting pulse, and this additional data also aids in interpretation of congested spectra. Many practical applications, however, only require a means to quantify change, and measurements of change are unaffected by the effects of apodization. These techniques have been used to more accurately analyze polystyrene and octadecylsilane surfaces.
60

Fundamental Studies of the Uptake and Diffusion of Sulfur Mustard Simulants within Zirconium-based Metal-Organic Frameworks

Sharp, Conor Hays 10 October 2019 (has links)
The threat of chemical warfare agent (CWA) attacks has persisted into the 21st century due to the actions of terror groups and rogue states. Traditional filtration strategies for soldier protection rely on high surface area activated carbon, but these materials merely trap CWAs through weak physisorption. Metal-organic frameworks (MOFs) have emerged as promising materials to catalyze the degradation of CWAs into significantly less toxic byproducts. The precise synthetic control over the porosity, defect density, and chemical functionality of MOFs offer exciting potential of for use in CWA degradation as well as a wide variety of other applications. Developing a molecular-level understanding of gas-MOF interactions can allow for the rational design of MOFs optimized for CWA degradation. Our research investigated the fundamental interfacial interactions between CWA simulant vapors, specifically sulfur mustard (HD) simulants, and zirconium-based MOFs (Zr-MOFs). Utilizing a custom-built ultrahigh vacuum chamber with infrared spectroscopic and mass spectrometric capabilities, the adsorption mechanism, diffusion energetics, and diffusion kinetics of HD simulants were determined. For 2-chloroethyl ethyl sulfide (2-CEES), a widely used HD simulant, infrared spectroscopy revealed that adsorption within Zr-MOFs primarily proceeded through hydrogen bond formation between 2-CEES and the bridging hydroxyls on the secondary building unit of the MOFs. Through the study of 1-chloropentane and diethyl sulfide adsorption, we determined that 2-CEES forms hydrogen bonds through its chlorine atom likely due to geometric constraints within the MOF pore environment. Temperature-programmed desorption experiments aimed at determining desorption energetics reveal that 2-CEES remain adsorbed within the pores of the MOFs until high temperatures, but traditional methods of TPD analysis fail to accurately measure both the enthalpic and entropic interactions of 2-CEES desorption from a single adsorption site. Infrared spectroscopy was able to measure the diffusion of adsorbates within MOFs by tracking the rate of decrease in overall adsorbate concentrations at several temperatures. The results indicate that 2-CEES diffusion through the pores of the MOFs is a slow, activated process that is affected by the size of the pore windows and presence of hydrogen bonding sites. We speculate that diffusion is the rate limiting step in the desorption of HD simulants through Zr-MOFs at lower temperatures. Stochastic simulations were performed in an attempt to deconvolute TPD data in order to extract desorption parameters. Finally, a combination of vacuum-based and ambient-pressure spectroscopic techniques were employed to study the reaction between 2-CEES and an amine-functionalized MOF, UiO-66-NH2. Although the presence of water adsorbed within UiO 66 NH2 under ambient conditions may assist in the reactive adsorption of 2-CEES, the reaction proceeded under anhydrous conditions. / Doctor of Philosophy / Chemical warfare agents (CWAs) are some of the most toxic chemicals on the planet and their continued use by terror groups and rogue nations threaten the lives of both civilians and the warfighter. Our work was motivated by a class of high surface area, highly porous materials that have shown the ability to degrade CWAs, specifically mustard gas, into less harmful byproducts. By determining the adsorption mechanism (how and where mustard gas “sticks” to the material), diffusion rates (how quickly mustard gas can travel through the pores of to reach the binding sites), and desorption energies (how strongly mustard gas “sticks” to the binding sites), we can alter the structure of these materials and to efficiently trap mustard gas and render it harmless. In the research described in this dissertation, we examined these fundamental interactions for a series of molecules that mimic the structure of mustard gas. and linear alkanes within several metal-organic frameworks with varying pore size. We observed the size of the pore environment affects the orientation that a given molecule sticks to binding sites as well as how quickly these compounds diffuse through the MOF. While the majority of these studies were conducted in a low-pressure environment that eliminated the presence of gas molecules in the atmosphere, research that exposed a MOF to a mustard gas mimic in an ambient environment demonstrated that gas molecules present in the atmosphere, especially water, can greatly impact the chemical interactions between mustard gas and zirconium-based MOFs.

Page generated in 0.055 seconds