• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 18
  • 6
  • 1
  • 1
  • Tagged with
  • 134
  • 134
  • 24
  • 21
  • 21
  • 21
  • 16
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

An Electrochemical and Spectroscopic Investigation of Nickel Electrodes in Alkaline Media for Applications in Electro-Catalysis

Hall, David Scott January 2014 (has links)
Nickel-based catalysts in aqueous alkaline media are low-cost electrode materials for electrolytic hydrogen generation, a renewable method of producing fuel and industrial feedstock. However, further work is necessary to develop inexpensive electro-catalyst materials with high activity and long-term stability. This thesis employs spectroscopic and electrochemical methods to directly address specific research problems for the development of improved materials and devices with commercial or industrial value. The first chapter reviews the applications of nickel electrodes; the structures of nickel, nickel hydroxides, and nickel hydrides; and techniques for measuring the electrochemically active surface area (AECSA) of nickel. In the second chapter, electrochemically precipitated nickel hydroxide materials are fully characterized by Raman spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). This work unifies and simplifies the large body of literature on the topic by considering two fundamental phases, α- and β-Ni(OH)2, and various types and extents of structural disorder. The third chapter examines and demonstrates the potential applications of in situ Raman spectroscopy by monitoring the spontaneous ageing of α-Ni(OH)2 to β-Ni(OH)2 in pure water at room temperature. The fourth chapter considers the longstanding problem of electrode deactivation, the gradual decrease in nickel electro-catalyst activity during prolonged hydrogen production. Voltammetric and XRD evidence demonstrates that hydrogen atoms can incorporate into the electrode material and cause structural disorder or the formation of α-NiHx and β-NiHx at the surface. The voltammetric formation of NiOx, α-Ni(OH)2, β-Ni(OH)2, and β-NiOOH surface species are examined by electrochemical and XPS measurements. The fifth chapter of this thesis presents a new method to measure the AECSA by adsorption of oxalate to the (001) surface of the surface Ni(OH)2, as evidenced by voltammetric and attenuated total reflectance (ATR) FT-IR spectroscopy measurements. The adsorbed oxalate limits the surface hydroxide to a single layer. The surface NiOOH/Ni(OH)2 reduction peak during the reverse scan may be used to accurately and precisely measure the AECSA. The error of this method is estimated at < 10 %.
82

Real-time coherent X-ray studies of kinetics and dynamics in self-organized ion beam nanopatterning

Myint, Peco 19 January 2021 (has links)
Real-time coherent Grazing-Incidence Small-Angle X-ray Scattering was used to investigate the average kinetics and the fluctuation dynamics during self-organized ion beam nano-patterning of two semiconductor surfaces: silicon at room temperature and germanium heated above its recrystallation temperature. For silicon nano-patterning, initially flat samples at room temperature were bombarded by a broad collimated beam of 1keV Ar+ and Kr+ ions at 65° polar angle, leading to the amorphization of the ion-irradiated surfaces and the spontaneous formation of nanoscale ripples. The temporal evolution of the average X-ray scattering intensity shows the evolution of average kinetics, while the fluctuation dynamics can be investigated by correlation of X-ray speckles. The surface behavior at early times can be explained within a linear theory framework. The transition away from the linear theory behavior is observed in the dynamics since the intensity correlation function quickly evolves into a compressed exponential decay on length scales corresponding to the peak wavelength and a stretched exponential decay on shorter length scales. The correlation times for silicon nano-patterning are maximum at the ripple wavelengths while they are smaller at other wavelengths. This has notable similarities and differences with the phenomenon of de Gennes narrowing. Overall, this dynamics behavior is found to be consistent with the simulations of a nonlinear growth model by Harrison et al. Following the formation of self-organized nano-ripples, they move across the surface. Homodyne X-ray alone cannot detect the motion, but because of the gradient of ion flux across the sample, we were able to measure in-situ the corresponding ripple velocity gradient by cross-correlating speckles and tracking their movements. For germanium nano-patterning at an elevated temperature, flat germanium samples kept at 300°C were bombarded by 1keV Ar+ ions at normal incidence. Unlike the case when surfaces are amorphizated during room temperature bombardment, the crystalline nano-pattern formation occurs mainly due to a surface instability caused by the Ehrlich-Schwoebel barrier. By using a linear theory analysis on the X-ray scattering intensities in the early times, we measured the contribution of the Ehrlich-Schwoebel barrier to the crystalline nano-patterning kinetics.
83

Silicene growth on insulating ultra-thin film of NaCl / Croissance du silicène sur une couche mince isolante du NaCl

Quertite, Khalid 14 November 2018 (has links)
Le silicène est l’équivalent du graphène pour le silicium avec une structure bidimensionnelle (2D). Il est supposé avoir des propriétés électroniques intéressantes comme les fermions de Dirac sans masse et présentant une grande mobilité des électrons. L’existence du silicène a été montrée récemment sur des substrats de métaux nobles comme l’argent ou l’or. Cependant les résultats montrent des interactions fortes entre la couche de silicène et le substrat métallique, ce qui a pour conséquence de détruire les propriétés électroniques intrinsèques du silicène. Dans le but de résoudre ce problème, nous proposons dans ce travail d’explorer d’autres substrats potentiels présentant de faibles interactions avec le silicène. Nous avons étudié la croissance de couches 2D de silicium sur un film mince isolant de NaCl. En effet, les métaux alcalins halogénés tel que NaCl offrent une solution avantageuse comme surface alternative puisqu'ils se comportent comme une couche diélectrique, permettant la caractérisation du silicène. Nous avons étudié les propriétés structurales et électroniques des couches de silicium 2D déposées sur un film mince de NaCl, lui-même déposé sur un substrat d’Ag(110). Une étude expérimentale a été réalisée combinant un grand nombre de techniques utilisées en science des surfaces telles que : « low energy electron diffraction » (LEED), « Auger electron spectroscopy » (AES), « scanning tunneling microscopy and spectroscopy » (STM/STS), «extended x-ray absorption fine structure » (EXAFS), « x-ray photoelectron spectroscopy » (XPS) et « angle resolved photoemission spectroscopy (ARPES) ». L’absorption d’atomes de silicium sur les films de NaCl révèle l’existence d’une couche de silicium 2D superficielle avec une structure très ordonnée en forme de nids d’abeilles. Cette couche présente une interaction faible avec le substrat tout en étant analogue au silicène. Enfin, des expériences préliminaires sur la croissance de silicene sur des films de NaCl dissociés sont présentées. L’effet de l’irradiation électronique du film de NaCl ainsi que des mesures d’ARPES sur le silicène intercalé sur Na sont présentées. / Silicene, the silicon-based analog of graphene which has a two-dimensional (2D) structure. It is expected to have attractive electronic properties such as massless Dirac fermions and high electron mobility. The existence of silicene has been shown recently on noble metal substrates such as Ag and Au. The results present strong interactions between the silicene adlayer and the metallic substrate which destroy the intrinsic electronic properties of silicene. In order to solve this problem, we propose in this work to explore other potential substrates that have weaker interactions with silicene. We studied the growth of a 2D silicon layer on insulating NaCl thin film. Indeed, Alkali metal halides such as NaCl offer a great solution as an alternative surface because they behave as a dielectric layer, allowing characterization of silicene material. We studied the structural and electronic properties of 2D silicon layer grown on a NaCl film deposited over Ag(110) substrate. A combined experimental investigation was performed with a large number of techniques which are used in surface science such as: low energy electron diffraction (LEED), auger electron spectroscopy (AES), scanning tunneling microscopy and spectroscopy (STM/STS), extended x-ray absorption fine structure (EXAFS), x-ray photoelectron spectroscopy (XPS) and angle resolved photoemission spectroscopy (ARPES). The adsorption of silicon atoms on NaCl films reveals the existence of a 2D silicon sheet adlayer with a highly ordered honeycomb-like structure. The silicon ad-layer has weak interactions with the substrate and it mimics the structure of silicene. Finally, preliminary experiments on the growth of silicene on dissociated NaCl films are presented. The effect of electron irradiation on the NaCl film and initial ARPES measurement on the silicone intercalated-Na atoms system are presented.
84

Orientation-dependent segregation and oxidation at Fe0.85Al0.15 random alloy surfaces / Dépendance en orientation de la ségrégation et de l'oxydation à la surface de l'alliage aléatoire Fe0.85Al0.15

Dai, Zongbei 15 December 2017 (has links)
Des monocristaux A2 de Fe0.85Al0.15 de terminaison (110), (100) et (111) ont servi de modèle pour étudier la ségrégation d'Al et l'oxydation d'aciers industriels à l'Al en combinant LEED, XPS, STM et GIXD. Toutes les surfaces propres sont sujettes à une intense ségrégation d'Al lors de recuits > 700 K. Au-delà de 1000 K, un quasi-équilibre est atteint et la couche concernée de 2-3 nm adopte une composition proche de la structure B2. Cependant, toutes les surfaces se comportent différemment en termes de reconstruction. La surface (110) développe une superstructure pseudo-hexagonale de 2nm avec une modulation incommensurable dans le plan. La surface (100) est toujours terminée (1×1) avec une apparence marbrée attri-buée à un contraste électronique et chimique. La surface (111) est locale-ment rugueuse avec des protrusions triangulaires nanométriques en raison d'un facettage induit par la ségrégation. La tendance à la ségrégation est con-firmée par des calculs ab initio. L'oxydation à haute température par O2 de ces surfaces conduit à une oxy-dation sélective de l'Al et à la formation de films d'alumine d'épaisseur 1-2nm. Des oxydes ordonnés croissent sur les faces (110) et (100) alors que des îlots apparaissent sur la face (111). Les sous-surface de (110) et (111) oxydés sont déplétées en Al et adoptent la structure D03 alors que celle de (100) ne varie pas. A la surface (110), l'alumine croit sous forme de deux domaines ayant une maille quasi-rectangulaire de (18.5 × 10.5) Å2 et un ac-cord (2×1)ox. Le film d'oxyde à la surface (100) présente deux domaines (2×1) sous la forme de bandes orthogonales; une explication plausible est la formation d'une structure distordue θ-Al2O3. / A2 Fe0.85Al0.15 single crystals with low-index orientations (110), (100) and (111) have been chosen as a model system to study the Al segregation and oxidation of industrial Al-alloyed steels by using combined techniques (LEED, XPS, STM, GIXD). All clean surfaces are prone to intense Al segregation when annealed at > 700 K. After 1000 K, a quasi-equilibrium is reached and the impacted layer of 2-3 nm has a composition close to the B2 structure. But all the surfaces behave differently in terms of reconstruction. The (110) surface develops a 2 nm pseudo-hexagonal superstructure with an incommensurate in-plane modulation. The (100) surface is always (1×1) terminated with a marbled-like appearance assigned to an electronic and chemical contrast. The (111) surface is locally rough with nanometric three-fold protrusions due to seg-regation-induced faceting involving (111) vicinal surfaces. The segregation trend is confirmed through ab initio calculations. The oxidation with O2 of all surfaces at high temperature results in selective oxidation of Al and alumina formation with a 1-2 nm self-limited thick-ness. Ordered oxides are found on (110) and (100) faces while a disordered 3D oxide grows on (111). Subsurfaces of oxidised (110) and (111) are de-pleted in Al and adopt the D03 structure, while (100) subsurface composi-tion is insensitive to oxidation. At (110) surface, a two-domain alumina grows with a (18.5 × 10.5) Å2 nearly rectangular rotated unit cell with a (2×1)ox matching. The oxide film at (100) surface presents two (2×1) do-mains in the form of nanometric orthogonal stripes; a likely explanation is the formation of a distorted θ-Al2O3 structure.
85

Free Radical Chemistries at the Surface of Electronic Materials

Wilks, Justin 08 1900 (has links)
The focus of the following research was to (1) understand the chemistry involved in nitriding an organosilicate glass substrate prior to tantalum deposition, as well as the effect nitrogen incorporation plays on subsequent tantalum deposition and (2) the reduction of a native oxide, the removal of surface contaminants, and the etching of a HgCdTe surface utilizing atomic hydrogen. These studies were investigated utilizing XPS, TEM and AFM. XPS data show that bombardment of an OSG substrate with NH3 and Ar ions results in the removal of carbon species and the incorporation of nitrogen into the surface. Tantalum deposition onto a nitrided OSG surface results in the initial formation of tantalum nitride with continued deposition resulting in the formation of tantalum. This process is a direct method for forming a thin TaN/Ta bilayer for use in micro- and nanoelectronic devices. Exposure to atomic hydrogen is shown to increase the surface roughness of both air exposed and etched samples. XPS results indicate that atomic hydrogen reduces tellurium oxide observed on air exposed samples via first-order kinetics. The removal of surface contaminants is an important step prior to continued device fabrication for optimum device performance. It is shown here that atomic hydrogen effectively removes adsorbed chlorine from the HgCdTe surface.
86

Ab Initio Methylammonium Orientation and Monolayer Effects in Hybrid Perovskite Solar Cells

Artz, Jacob M. January 2021 (has links)
No description available.
87

Mechanistic Studies of Crotonadehyde Partial Hydrogenation and Ethanol Steam Reforming Reactions on Planar Catalysts—A Gas-Phase and Ambient Pressure XPS Study

Mueanngern, Yutichai 25 September 2020 (has links)
No description available.
88

First Principles Studies Of Pattern Formations And Reactions On Catalyst Surfaces

Le, Duy 01 January 2012 (has links)
This dissertation undertakes theoretical research into the adsorption, pattern formation, and reactions of atoms, molecules, and layered materials on catalyst surfaces. These investigations are carried out from first-principles calculations of electronic and geometric structures using density functional theory (DFT) for predictions and simulations at the atomic scale. The results should be useful for further study of the catalytic activities of materials and for engineering functional nanostructures. The first part of the dissertation focuses on systematic first-principles simulations of the energetic pathways of CO oxidation on the Cu2O(100) surface. These simulations show CO to oxidize spontaneously on the O-terminated Cu2O(100) surface by consuming surface oxygen atoms. The O-vacancy on Cu2O(100) then is subsequently healed by dissociative adsorption of atmospheric O2 molecules. The second part discusses the pattern formation of hydrogen on two and three layers of Co film grown on the Cu(111) surface. It is found that increasing the pressure of H2 changes the hydrogen structure from 2H-(2 × 2) to H-p(1 × 1) through an intermediate structure of 6H-(3 × 3). The third part compares the results of different ways of introducing van der Waals (vdW) interactions into DFT simulations of the adsorption and pattern formation of various molecules on certain substrates. Examinations of the physisorption of five nucleobases on iii graphene and of n-alkane on Pt(111) demonstrate the importance of taking vdW interactions into account, and of doing so in a way that is best suited to the particular system in question. More importantly, as the adsorption of 1,4 diaminebenzene molecules on Au(111) shows inclusion of vdW interactions is crucial for accurate simulation of the pattern formation. The final part carries out first-principles calculations of the geometric and electronic structure of the Moir´e pattern of a single layer of Molybdenum disulfide (MoS2 ) on Cu(111). The results reveal three possible stacking types. They also demonstrate that the MoS2 layer to be chemisorbed, albeit weakly, and that, while Cu surface atoms are vertically disordered, the layer itself is not strongly buckled.
89

In-situ Gas Phase Catalytic Properties Of Metal Nanoparticles

Ono, Luis 01 January 2009 (has links)
Recent advances in surface science technology have opened new opportunities for atomic scale studies in the field of nanoparticle (NP) catalysis. The 2007 Nobel Prize of Chemistry awarded to Prof. G. Ertl, a pioneer in introducing surface science techniques to the field of heterogeneous catalysis, shows the importance of the field and revealed some of the fundamental processes of how chemical reactions take place at extended surfaces. However, after several decades of intense research, fundamental understanding on the factors that dominate the activity, selectivity, and stability (life-time) of nanoscale catalysts are still not well understood. This dissertation aims to explore the basic processes taking place in NP catalyzed chemical reactions by systematically changing their size, shape, oxide support, and composition, one factor at a time. Low temperature oxidation of CO over gold NPs supported on different metal oxides and carbides (SiO2, TiO2, TiC, etc.) has been used as a model reaction. The fabrication of nanocatalysts with a narrow size and shape distribution is essential for the microscopic understanding of reaction kinetics on complex catalyst systems ("real-world" systems). Our NP synthesis tools are based on self-assembly techniques such as diblock-copolymer encapsulation and nanosphere lithography. The morphological, electronic and chemical properties of these nanocatalysts have been investigated by atomic force microscopy (AFM), scanning tunneling microscopy (STM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). Chapter 1 describes briefly the basic principles of the instrumentation used within this experimental dissertation. Since most of the state-of-art surface science characterization tools provide ensemble-averaged information, catalyst samples with well defined morphology and structure must be available to be able to extract meaningful information on how size and shape affect the physical and chemical properties of these structures. In chapter 2, the inverse-micelle encapsulation and nanosphere lithography methods used in this dissertation for synthesizing uniformly arranged and narrow size- and shape-selected spherical and triangular NPs are described. Chapter 3 describes morphological changes on individual Au NPs supported on SiO2 as function of the annealing temperature and gaseous environment. In addition, NP mobility is monitored. Chapter 4 explores size-effects on the electronic and catalytic properties of size-selected Au NPs supported on a transition metal carbide, TiC. The effect of interparticle interactions on the reactivity and stability (catalyst lifetime) of Au NPs deposited on TiC is discussed in chapter 5. Size and support effects on the formation and thermal stability of Au2O3, PtO and PtO2 on Au and Pt NPs supported on SiO2, TiO2 and ZrO2 is investigated in chapter 6. Emphasis is given to gaining insight into the role of the NP/support interface and that played by oxygen vacancies on the stability of the above metal oxides. Chapter 7 reports on the formation, thermal stability, and vibrational properties of mono- and bimetallic AuxFe1-x (x = 1, 0.8, 0.5, 0.2, 0) NPs supported on TiO2(110). At the end of the thesis, a brief summary describes the main highlights of this 5-year research program.
90

Electromigration induced step instabilities on silicon surfaces

Gibbons, Brian J., Jr 22 September 2006 (has links)
No description available.

Page generated in 0.0454 seconds