• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 33
  • 12
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 175
  • 175
  • 36
  • 35
  • 33
  • 33
  • 30
  • 24
  • 22
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Two-dimensional temperature model for target materials bombarded by ion beams

Bostick, Kent C. 04 February 1992 (has links)
The ion implantation process is a very precise, controllable, and reproducible method used to enhance material properties of finished components such as ball bearings. Essentially, the target material is bombarded by accelerated ions to form a thin alloyed layer in the substrate. As the ions deposit their kinetic energy in the target it begins to heat up. To prevent thermal distortion in the finished pieces the ion implantation is performed at dose levels (dependent on the ion fluence and time duration of implantation) to insure that the target pieces stay at relatively low temperatures. Consequently, the low temperature requirement for many applications limits the economic, and probably, the physical success of ion implantation. The purpose of this study was to show the applicability of using a two-dimensional computer code developed to model plasma disruptions and subsequent energy deposition on a fusion reactor first wall to calculate surface and bulk temperature information during ion implantation. In turn the code may assist researchers pursuing development of adequate cooling for target materials in an attempt to overcome the low temperature constraint. All data supported the hypotheses that the two-dimensional code previously developed for fusion reactor applications was adequate to model the ion implantation process. / Graduation date: 1992
102

Dynamic terrain following: nvCPD scanning technique improvement

Pyekh, Yury B. 19 May 2010 (has links)
There is a large number of measurement techniques that is used for a surface inspection and a characterization of different types of materials. One of these techniques is a contact potential difference (CPD) scanning technique. In this project a non-vibrating contact potential difference (nvCPD) method is utilized to measure a work function and a topographical structure of a sample surface. A sample is mounted on a spindle that rotates at high speed. A nvCPD sensor detects work-function variations during movement above the sample surface. There are certain factors that create difficulties during the measurement process. A nonplanar sample surface, the spindle wobble and an incline of a mounted sample impede the safe (without impacting the surface) scanning at a close distance. The goal of this thesis was to implement a height sensor as a feedback device to dynamically control and adjust a CPD sensor flying height. Since a CPD signal is inversely proportional to the flying height, minimization of this height will enhance the signal magnitude, the signal-to-noise ratio and the resolution of measurements.
103

Characterization of open celled metal foams

Lin, Stephanie Janet 26 January 2011 (has links)
Open cell metal foams are a type of engineered material can be characterized by high porosity, high strength to weight ratio, tortuous flow paths and high surface area to volume ratio. It is the structure that gives the metal foams the characteristics that make them well suited for many application including heat exchangers. In this work, the structure of open celled metal foams is quantitatively characterized using an image analysis based method in order to predict the evaporative heat transfer of the metal foam using the fluid permeability. Several image processing algorithms were developed to quantitatively characterize the porosity, surface area per unit volume and the tortousity of metal foams from digital images of the cross sections of the material, and an expression was used to calculate the fluid permeability. An algorithm was developed to partion the pore space in the digital images so that individual cells within the structure could also be quantitatively characterized. Tools were also developed to predict the structure of open celled foam processed using the sacrificial template method by digitally constructing microstructures based the particle packing of the sacrificial templating material.
104

Microstructures and multifunctional microsystems based on highly crosslinked polymers

Singamaneni, Srikanth. January 2009 (has links)
Thesis (Ph.D)--Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Tsukruk, Vladimir; Committee Member: Gall, Ken; Committee Member: Griffin, Anselm; Committee Member: Jang, Seung Soon; Committee Member: Thio, Yonathan. Part of the SMARTech Electronic Thesis and Dissertation Collection.
105

The surface characteristics of spores from thermophilic bacilli isolated from a milk powder production line and their influence on adhesion to surfaces

Seale, Richard Brent, n/a January 2009 (has links)
Spores of thermophilic bacilli are a common concern during the manufacture of milk powder. Spores are believed to occur in high numbers in milk powder due to their ability to survive pasteurisation, attach to stainless steel surfaces, germinate, grow as biofilms and subsequently enter the product stream and thereby contaminate the final product. In this study, thirty one thermophilic bacilli isolates were obtained from a New Zealand milk powder production line and identified as either Anoxybacillus flavithermus or Geobacillus spp. using random amplified polymorphic DNA (RAPD) and species-specific PCR. Sporulation media and a polyethylene glycol two-phase separation system were modified to produce high yields of spores free from debris. The spores of four Geobacillus spp. isolates (CGT-8, D4, E7 and E11) were characterised in terms of structure (electron microscopy), surface charge (zeta potential), hydrophobicity (contact angle and microbial adhesion to hexadecane) and attenuated total reflectance infrared spectroscopy (ATR-IR). Spores from three of the four isolates possessed an exosporium while the fourth did not. However the integrity of the exosporium varied over time. The spores were negatively charged (-10 to -20 mV) at neutral pH and high ionic strength (0.1 M KC1). Both hydrophobicity assays revealed that the spores of the four isolates were relatively hydrophilic while ATR-IR revealed the spores' surfaces consisted of protein and polysaccharides. The influence of these spore characteristics on adhesion to a variety of substrata under high flow rates was examined using the extended Derjaguin, Landau, Verwey and Overbeek (XDLVO) theory. Spores generally attached in higher numbers to hydrophobic surfaces compared to hydrophilic surfaces, however this observation was more prevalent for isolate D4. This result indicated that a single mechanism could not describe the adhesion of spores from different strains. A series of glass surfaces with modified characteristics were produced in order to test the antifouling properties on the adhesion of D4 spores. Spores suspended in a high ionic strength medium (0.1 M KC1) attached in greater numbers (1 Log₁₀ CFU cm⁻�) to positively charged and hydrophobic surfaces compared with negatively charged and hydrophilic surfaces. A clean in place (CIP) procedure, reduced spore numbers on hydrophobic and hydrophilic surfaces by 1.5 and by 2.0 Log₁₀ CFU cm⁻�, respectively. When spores were suspended in milk, there was little difference in the number of spores attaching to the different surfaces (ie. 3.5 to 3.8 Log₁₀ CFU cm⁻�), and spore removal from surfaces via a CIP regime was unchanged (1.5 to 2.0 Log₁₀ CFU cm⁻� reduction) compared with spores that attached in simple 1:1 electrolyte media. The effects of a caustic wash on spore surface characteristics and adhesion was determined. There was a significant reduction in spore viability (2 Log₁₀ CFU mL⁻�) after a 30 min caustic wash at 65 �C in the current study, however surviving spores displayed a greater propensity to attach to stainless steel. Surface characterisation results revealed an increase in hydrophobicity and a greater negative charge on the spores' surface after treatment with NaOH. Surviving spores could potentially recontaminate sections of the plant which are cleaned with this recycled caustic wash solution, thereby seeding surfaces with spores at the beginning of the next processing run. In conclusion, while surfaces that reduce spore adhesion and enhance removal can be produced, exposure to complex solutions such as milk can reduce the anti-fouling effectiveness of such surfaces to spore adhesion.
106

The surface characteristics of spores from thermophilic bacilli isolated from a milk powder production line and their influence on adhesion to surfaces

Seale, Richard Brent, n/a January 2009 (has links)
Spores of thermophilic bacilli are a common concern during the manufacture of milk powder. Spores are believed to occur in high numbers in milk powder due to their ability to survive pasteurisation, attach to stainless steel surfaces, germinate, grow as biofilms and subsequently enter the product stream and thereby contaminate the final product. In this study, thirty one thermophilic bacilli isolates were obtained from a New Zealand milk powder production line and identified as either Anoxybacillus flavithermus or Geobacillus spp. using random amplified polymorphic DNA (RAPD) and species-specific PCR. Sporulation media and a polyethylene glycol two-phase separation system were modified to produce high yields of spores free from debris. The spores of four Geobacillus spp. isolates (CGT-8, D4, E7 and E11) were characterised in terms of structure (electron microscopy), surface charge (zeta potential), hydrophobicity (contact angle and microbial adhesion to hexadecane) and attenuated total reflectance infrared spectroscopy (ATR-IR). Spores from three of the four isolates possessed an exosporium while the fourth did not. However the integrity of the exosporium varied over time. The spores were negatively charged (-10 to -20 mV) at neutral pH and high ionic strength (0.1 M KC1). Both hydrophobicity assays revealed that the spores of the four isolates were relatively hydrophilic while ATR-IR revealed the spores' surfaces consisted of protein and polysaccharides. The influence of these spore characteristics on adhesion to a variety of substrata under high flow rates was examined using the extended Derjaguin, Landau, Verwey and Overbeek (XDLVO) theory. Spores generally attached in higher numbers to hydrophobic surfaces compared to hydrophilic surfaces, however this observation was more prevalent for isolate D4. This result indicated that a single mechanism could not describe the adhesion of spores from different strains. A series of glass surfaces with modified characteristics were produced in order to test the antifouling properties on the adhesion of D4 spores. Spores suspended in a high ionic strength medium (0.1 M KC1) attached in greater numbers (1 Log₁₀ CFU cm⁻�) to positively charged and hydrophobic surfaces compared with negatively charged and hydrophilic surfaces. A clean in place (CIP) procedure, reduced spore numbers on hydrophobic and hydrophilic surfaces by 1.5 and by 2.0 Log₁₀ CFU cm⁻�, respectively. When spores were suspended in milk, there was little difference in the number of spores attaching to the different surfaces (ie. 3.5 to 3.8 Log₁₀ CFU cm⁻�), and spore removal from surfaces via a CIP regime was unchanged (1.5 to 2.0 Log₁₀ CFU cm⁻� reduction) compared with spores that attached in simple 1:1 electrolyte media. The effects of a caustic wash on spore surface characteristics and adhesion was determined. There was a significant reduction in spore viability (2 Log₁₀ CFU mL⁻�) after a 30 min caustic wash at 65 �C in the current study, however surviving spores displayed a greater propensity to attach to stainless steel. Surface characterisation results revealed an increase in hydrophobicity and a greater negative charge on the spores' surface after treatment with NaOH. Surviving spores could potentially recontaminate sections of the plant which are cleaned with this recycled caustic wash solution, thereby seeding surfaces with spores at the beginning of the next processing run. In conclusion, while surfaces that reduce spore adhesion and enhance removal can be produced, exposure to complex solutions such as milk can reduce the anti-fouling effectiveness of such surfaces to spore adhesion.
107

Development of solution techniques and design guidelines for equestrian trails on public lands

Tabor, Nathan Kyle. January 2007 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on November 6, 2007) Includes bibliographical references.
108

Multi-scale nonlinear constitutive models using artificial neural networks

Kim, Hoan-Kee. January 2008 (has links)
Thesis (Ph. D.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Rami M Haj-Ali; Committee Member: Arash Yavari; Committee Member: Donald W. White; Committee Member: Erian Armanios; Committee Member: Kenneth M. Will.
109

3D numerical modeling of dry/wet contact mechanics for rough, multilayered elastic-plastic solid surfaces and effects of hydrophilicity/hydrophobicity during separation with applications

Cai, Shaobiao, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 189-198).
110

Effect of flexible substrate surface modification on inkjet printed colloidal drop evaporation and deposition

Gawande, Sailee Sanjay. January 2009 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009. / Includes bibliographical references.

Page generated in 0.0465 seconds