• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilité et filtration de Harder-Narasimhan

Bruasse, Laurent 21 December 2001 (has links) (PDF)
Née sur les variétés algébriques, la notion de stabilité s'est ensuite généralisée aux variétés kähleriennes, puis, au variétés holomorphes compactes grâce à l'utilisation des métriques de Gauduchon. L'étude du comportement des fibrés (ou des faisceaux) non semi-stables n'a été faite de façon complète que dans le cas algébrique à travers la notion de filtration de Harder-Narasimhan (FHN). Nous poursuivons ici cette étude pour des variétés holomorphes compactes quelconques. Nous montrons qu'il est possible de définir le sous-faisceau de pente maximale d'un fibré vectoriel complexe. Ce sous-faisceau est obtenu comme limite au sens des sous-fibrés holomorphes faibles, notion déjà utilisée par Uhlenbeck et Yau pour la correspondance de Kobayashi-Hitchin, qui nous donne ici ``la bonne notion de convergence''. Nous démontrons l'existence d'une FHN dans ce cadre. Nous généralisons ensuite le résultat aux faisceaux cohérents sans-torsion. On est alors confronté à des problèmes de convergence liés à la non compacité de la base (lieu où le faisceau est localement libre). Nous montrons ensuite comment ces méthodes s'appliquent à une famille de fibrés (ou une famille plate de faisceaux sans-torsion) définie sur une déformation de variété holomorphe compacte pour obtenir des résultats d'existence de sous-faisceaux limites de type Bishop. On obtient par là-même une nouvelle démonstration de l'ouverture de la stabilité en déformation qui n'utilise pas la difficile correspondance de Kobayashi-Hitchin. Dans une deuxième partie, nous donnons des conditions équivalentes de simplicité et de stabilité pour les fibrés tangents des surfaces holomorphes compactes de la classe $VII$. Nous obtenons, en particulier, un exemple de déformation de surface à coquille sphérique globale qui illustre la non ouverture de la non semi-stabilité en déformation.

Page generated in 0.102 seconds