• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 14
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 23
  • 19
  • 14
  • 14
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Análisis de la producción de sedimentos en diferentes escalas de tiempo en una subcuenca semiárida, Moquegua - Perú / Analysis of semiarid catchment sediment yield employing different data time intervals, Moquegua - Peru

Norvin Plumieer Requena Sánchez 10 October 2014 (has links)
Usualmente la producción de sedimentos en suspensión (Qss) de un río es calculada utilizando datos de caudales medios diarios o mensuales. Considerando que la mayor Qss ocurre durante los eventos de lluvias y también que los caudales medios no son capaces de representar adecuadamente los máximos caudales, principalmente en zonas de alta variabilidad climática, la forma usual de cálculo de Qss puede subestimar esta producción. En este sentido, esta investigación buscó analizar la influencia de la variabilidad temporal de los datos de caudales en el cálculo de la producción de sedimentos. Adicionalmente fue analizada el uso de diferentes tipos de curvas de sedimentos: (i) para todo el periodo de estudio, (ii) por años hidrológicos y (iii) asociación por épocas características (húmedas, semi-húmedas y secas). El estudio fue realizado en la subcuenca del río Torata, ubicada en una zona semiárida al sur del Perú, entre 2100 y 5200 m de altitud con pendiente promedio de 21.0% y alta variabilidad climática, en especial la precipitación que se ve reflejado en los caudales, ya que en un lapso de horas puede variar de 4 a 34 m3/s. El error entre la descarga prevista y estimada para el periodo de estudio (2001-2012) utilizando los diferentes tipos de curvas fue (i) -65.85%, (ii) -15.36% y (iii) -8.74%, presentando mejora en el coeficiente de eficiencia de Nash-Sutcliffe de 0.248 para 0.500. Los resultados mostraron que la diferencia entre la descarga de sedimentos en suspensión total para el periodo calculado con caudales medias mensuales y diarias fue de -92% y -62%, ambos en comparación de producción para valores medios horarios. También fue constatado que el 99.7% de la producción de sedimentos ocurre en temporada de lluvias, inclusive, un único evento de lluvia llegó a producir 80% de la producción anual. Los resultados de esta investigación ponen en manifiesto la importancia de utilizar registros de caudales con escalas pequeñas de tiempo (minutos, horas), que puedan representar la alta variabilidad de los caudales característicos de zonas semiáridas. / The usual methods that calculate the suspended sediment flux (Qss) of rivers employ discharge mean values daily or monthly. As most of the sediments are transported during overflow events and a mean value smooths the flood peak discharge, mainly in high climatic variability areas, the usual method to evaluate the Qss might underestimate the production of river sediments. This paper reports on an analysis of the gauge influence of temporal variability on the sediment yield estimation. Additionally, the use of different types of sediment rate curves was analyzed for (i) the whole time-series data, (ii) per hydrological year, and (iii) per hydrological pattern characterization (flood, intermediary and drought). A study case was conducted in the Torata river sub-catchment, a Peruvian semi-arid area located between altitudes of 2100 and 5200 meters and whose average slope is 21%. The high climatic variability is expressed by the huge river flow amplitude, which ranges from 4 to 34 m3/s in a few hours. The errors for the sediment yield from 2001 to 2012 estimated by the different sediment rating curves were (i) -65,85%, (ii) -15,36% and (iii) -8,74%, with a 0,248 to 0,500 Nash-Sutcliffe efficiency coefficient improvement. The differences between the sediment yield in total suspension for the period calculated monthly and daily were -92% y and -62%, respectively, in comparison with the production for hourly average values. Results show that 99,7% of the sediment are produced during the flood season and a single overflow event could represent 80% of the annual sediment discharge flow. This research highlights the importance of collecting and using discharge data of a short time interval (minutes or hours) to compute and represent the overflow peaks typical of semiarid regions.
52

Estudo da concentração de sedimentos em suspensão no reservatório de Mogi-Guaçu (SP) / Study of suspended sediment concentration in Mogi-Guaçu (SP) reservoir

Bruno Bernardo dos Santos 21 July 2015 (has links)
Os processos hidrossedimentológicos são complexos e dependem de diversos fatores. Entendê-los requer alto grau de especialização de mão de obra, além da utilização de equipamentos e técnicas ainda incipientes no país. O monitoramento hidrossedimentológico com dados confiáveis de concentração de sedimentos em suspensão pode ser problemático quando são empregados métodos convencionais, pois geralmente os mesmos apresentam medições com quantidade de postos e frequências inferiores aos desejáveis, limitando estudos e a gestão de recursos hídricos quando se trata de reservatórios. Nesse contexto, esta dissertação apresenta um estudo realizado no reservatório da Pequena Central Hidrelétrica Mogi-Guaçu (SP) na qual realizou-se a correlação dos dados de concentração de sedimentos em suspensão mensuradas com dispositivo automático (LISST-100X) e por amostragem convencional (Garrafa Van Dorn). Por meio de regressões lineares e testes estatísticos avaliou-se a eficiência da técnica de difração à laser, e se estimaram as concentrações de sedimentos em suspensão para as duas campanhas realizadas. Analisando os resultados obtidos, confirmou-se estatisticamente que dentre todos os cenários de regressões lineares adotados, o modelo que divide o reservatório em setores apresentou melhores estimativas de concentração, inferindo-se que a concentração do sedimento em suspensão possui um comportamento característico ao segmento do reservatório de Mogi-Guaçu. Notou-se também, a redução da concentração entre as duas campanhas realizadas, decorrente principalmente pela redução da velocidade do fluxo d\'água. Desse modo, a sonda LISST-100X, se mostrou viável para o estudo de caso. Ressalta-se que a utilização desta sonda possibilitou a obtenção de um número maior de dados do que os obtidos por meio do emprego de técnica convencional, possibilitando uma análise mais completa do reservatório e reduzindo significativamente o trabalho de campo, laboratório e escritório. / Hydrosedimentological processes are complex and depend on many factors and understanding them requires a high degree of labor specialization, as well as the use of equipment and techniques still incipient in Brazil. The hydrosedimentological monitoring with reliable sediment concentration data may be problematic when conventional methods are used. Its measurements are usually undertaken at a number of stations and frequencies below the desired ones, which limit studies and the management of water resources of reservoirs. This dissertation reports on a study on the Mogi-Guaçu (SP) Small Hydroelectric Plant reservoir and the correlation between the suspended sediment sample data measured by an automatic device (LISST-100X) and conventional sampling conducted by a Van Dorn sampler. The laser diffraction efficiency was evaluated by linear regression and statistical tests and the concentration of suspended sediment was estimated for the two campaigns. The results show the model that divides the reservoir into sectors provided better estimates of concentration and the concentration of suspended sediment exhibited a characteristic behavior for the segment of Mogi-Guaçu reservoir. A reduction in the concentration, caused mainly by a decrease in the water flow speed, was also observed between the two campaigns and laser diffraction proved feasible for the case study. This methodology enables the obtaining of a larger amount of data than that achieved by conventional techniques, a more complete analysis of the shell and significant reductions in the field, laboratory and office work.
53

Understanding spatial patterns of dispersal and deposition of fine sediment and adsorbed phosphates in the Wiesdrift Wetland on the Nuwejaars River, Cape Agulhas

Jagganath, Tashveera January 2021 (has links)
Magister Scientiae (Integrated Water Resource Management) / River catchments in agricultural areas are strongly influenced by runoff from cultivated or grazed fields, and nutrient loading of these fields can result in large quantities of nitrates and phosphates being transported to rivers in surface runoff. In intensively farmed areas, nutrient loading is often so high that large quantities of nitrates and phosphates are transported to streams in surface runoff. Within these areas, strips of natural riparian vegetation and wetlands are critical in providing nutrient uptake functions that can reduce the load entering streams. A wetland can be a source, sink or transformer of nutrients, where fine sediments such as silt and clay have the ability to store and trap considerable amounts of phosphorus through adsorption and precipitation processes. Therefore, the determination of phosphorus adsorbed to fine sediment is important in understanding the role and value of wetlands in agricultural landscapes, and is the main focus of this study. The aim of the study is to evaluate an indicator-based approach, WET-EcoServices, to assess wetland sediment and phosphate trapping, through comparison with field survey data. The study focuses on spatial analysis and field survey of three Hydrogeomorphological (HGM) units classified for the Wiesdrift wetland on the Nuwejaars River, Cape Agulhas. The three HGM units are classified as: a floodplain wetland at the inlet of the system, a channelled valley-bottom wetland towards the middle part of the system and a floodplain wetland towards the outlet of the system. In-field observations were recorded for hydrogeomorphic and vegetation characteristics for each HGM Unit. AstroTurf mat sediment samples, grabbed channel bed and floodplain sediment samples were analysed for particle size and orthophosphate concentrations, while suspended sediment masses were recorded from three pairs of time-integrated sediment samplers located near the inlet, near the middle, and near the outlet of the wetland. Statistical analysis showed that orthophosphate concentrations are associated with fine sediment. Thus, the orthophosphate concentrations follow the distribution of silt on the Wiesdrift wetland. The dominant vegetation along transect 2, at which the highest concentrations of orthophosphate was found, is occupied by Typha capensis and Cyperus textilis. The percentage of fine sediment (silt) ranged between 0-37%, where the remaining percentage was sand. There was also a significant positive correlation between orthophosphate concentration and silt (Spearman’s rank-order correlation: rs = 0.692, N = 70, P < .001). The largest total sediment amount was found at Outlet 1 and Outlet 2 in the HGM unit 3 of the Wiesdrift wetland, with a value of 0.653 g. Overall, orthophosphate concentrations ranged between 0 mg/kg and 31320 mg/kg within the Wiesdrift wetland. WET-EcoServices determines an average score for phosphate trapping from on-site indicators such as hydrological zones, vegetation structure and soil texture/permeability. The dispersal of fine sediment and associated adsorbed phosphate is more complex than can be determined by a tool like WET-EcoServices because the tool captures the long-term mean conditions of a wetland system that determines the overall uptake of phosphates over extended time periods, thus future wetland assessments is recommended to take place over a longer period than this study. However, the field results of orthophosphate distribution are generally consistent with the findings from WET-EcoServices, further motivating for the use of the tool in wetland management applications.
54

An optical sensor for in-stream monitoring of suspended sediment concentration

Zhang, Yali January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Naiqian Zhang / Suspended sediment concentration (SSC) in water is one of the most important parameters to evaluate water quality. Monitoring SSC provides important information on determining sediment transport for soil erosion research and soil/water conservation practices. Sediment mass transported at a given time can be assessed by simultaneous SSC and water flow velocity measurements. Fouling, including bio-fouling, has damaging impact on optical SSC measurements over the long term. In this study, an inexpensive, real-time, self-cleaning, optical sediment and flow velocity sensor was developed. Laboratory experiments were conducted on a previously designed SSC sensor. A light modulation algorithm was designed to reduce the influence of ambient light, especially sunlight, on measurement accuracy. Statistical models to predict SSC based on measured light intensities were established and compared with neural network models. The statistical analysis showed that soil texture played an important role in SSC measurement accuracy while the designed sensor was capable of reducing the effect of water color on sensor performance. Neural-network models can further remove the influence of soil texture type on SSC measurement. The sensor design was simplified based on a stepwise selection analysis. Long-term field experiments were conducted in Kansas and Georgia to evaluate the sensor performance, the effect of fouling, including bio-fouling, on sensor lenses, and the effect of temperature on the measurement. Methods of removing the fouling effect through data correction were developed. Results indicated that the designed optical SSC sensor was capable of providing rapid response to SSC fluctuations in water flow. Temperature of the water body has an insignificant impact on SSC measurement. In order to reduce fouling, an air-blast cleaning mechanism was integrated into the optical sediment sensor. Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials, and to verify the effectiveness of air-blast cleaning in reducing fouling. Results indicated that air-blast cleaning mechanism was capable of reducing clay/silt fouling on sensor signals. The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions. An air pressure drop test was conducted on the hose carrying pressurized air. Results showed negligible pressure drop.A flow velocity measurement function based on the cross-correlation principle was integrated into the optical sediment sensor. An experiment was conducted in laboratory to examine the sensor performance on velocity measurement using a closed circulation system. A solution of blue colorant, Brilliant Blue FCF, was used as an artificial source to absorb light emitted by LEDs in the sensor and the signal variation patterns were measured. The results indicated that the cross-correlation-based velocity sensor was capable of measuring water flow velocity within in a certain velocity range using the dye injection method.
55

Dynamique saisonnière des sédiments en suspension dans l'estuaire de la Gironde : modélisation opérationnelle de la réponse aux forçages hydrodynamiques / Seasonal dynamics of suspended sediment in the Gironde estuary : operational modelling under hydrodynamic forcing

Benaouda, Abdelkader 08 September 2008 (has links)
L’objectif de ce travail est d’étudier la dynamique du bouchon vaseux, ainsi que la dynamique saline, dans l’estuaire de la Gironde. La stratégie adoptée consiste à examiner, par le biais du modèle de simulation SIAM-3D, l’impact du paramétrage hydro-sédimentaire, du débit fluvial et de la bathymétrie, sur le comportement des sédiments et sur l’évolution de la salinité. L’effet de la vitesse de chute sur la dynamique sédimentaire est l’un des cas étudiés ; son impact sur la distribution des suspensions est considérable. Ainsi, la diminution de ce paramètre entraîne l’homogénéisation de la concentration sur la verticale, mais aussi l’étalement du bouchon vaseux et l’évacuation d’une masse de sédiment hors de l’estuaire. Nous avons également mis en évidence lors d’une période de débits moyens ou faibles précédée par une crue, la partition du bouchon vaseux simulé en deux masses turbides, l’une remonte l’estuaire alors que l’autre se maintient en aval. La dynamique saline a été étudiée, entre autres, par l’analyse des gradients de salinité, calculés dans l’estuaire aval et en situation de forts débits. On observe, la diminution de ces gradients avec l’augmentation de l’intensité de la marée à l’échelle des cycles vives-eaux/mortes-eaux, toutefois, de fortes valeurs sont maintenues lors de la phase d’augmentation de cette grandeur à l’échelle de la marée. D’autres résultats ont permis de vérifier la capacité du modèle à simuler des dynamiques sédimentaires observées in-situ ; on peut citer entre autres, le détachement du bouchon vaseux de la rive gauche dans l’estuaire aval et son transfert vers la rive droite, en situation de forts débits. Afin d’évaluer l’impact de l’évolution du fond des fleuves de 1959 à 2002 sur l’hydrodynamique et les dynamiques sédimentaire et saline, nous avons comparé deux simulations, l’une effectuée avec l’ancienne bathymétrie de 1959, l’autre avec la nouvelle bathymétrie de 2002. Les résultats montrent l’augmentation de la masse sédimentaire dans les fleuves avec la bathymétrie de 2002 comparée à celle de 1959, ainsi que la hausse de la salinité dans la Garonne et l’amplification de la marée dans la Dordogne. Ces résultats sont en accord avec les mesures et observations in-situ. / The aim of this work is to study the turbidity maximum dynamics as well as the salinity dynamics in the Gironde estuary. The adopted strategy consists in analysing, by means of the SIAM-3D simulation model, the impact of hydro-sedimentary parameters, the fluvial flow and the bathymetry on sediment behaviour and salinity evolution. The effect of settling velocity on sediment dynamics is one of the studied cases; its impact on suspended sediment distribution is goodly. Thus, the diminution of this parameter leads to homogenisation of concentration in water column, but also spreading the turbidity maximum and evacuation of a sediment mass outside the Gironde estuary. We gave also prominence to the division of the turbidity maximum into two parts during low or mean water flow preceded by peak high water discharge, one of the parts migrates upstream whereas the other remains downstream. We studied the salinity dynamics, among others things, by means of analysing the calculated salinity gradients in the lower estuary during high water discharge. We observe the decrease of these gradients with increase of the tide intensity on a scale of spring tides/neap tides cycles, however, on a scale of tide, these gradients reach high values during the augmentation phase. Others results indicate the model capacity to simulate in-situ observations of the sediment dynamics; for example, the detachment of turbidity maximum from the left bank in the lower estuary and its transfer to the right bank during high water discharge. In order to evaluate the impact of the bed river evolution from 1959 to 2002 on hydrodynamics, sediment and salinity dynamics, we compared two simulations performed using the former (1959) and recent (2002) bathymetries. The results demonstrate that the sediment mass increase in the rivers with recent bathymetry, as well as, the salinity in the Garonne river and the tide amplitude in the Dordogne river. These results are in accordance with the in-situ measures and observations.
56

Suivi des flux d'eau et de matières en suspension dans les cours d'eau par profileurs acoustiques Doppler horizontaux / Monitoring flow and fluxes of suspended sediment in rivers using side-looking acoustic Doppler current profilers

Moore, Stéphanie 16 December 2011 (has links)
Cette thèse est une étude de l'applicabilité des profileurs acoustiques Doppler horizontaux (H-ADCP) pour le suivi des flux d'eau et de matières en suspension (MES) dans les rivières. Plus d'un an de données acquises avec des H-ADCP de 300, 600 et 1200 kHz sur quatre sites, sur le Rhône, l'Isère et la Saône, avec des géométries et des conditions de forçage contrastées sont analysées. Les résultats montrent qu'une profondeur de section limitée peut poser problème en raison de la diffusion d'une partie de l'énergie acoustique par la surface libre. De plus, quand l'intensité rétrodiffusée par les particules est trop faible, les mesures de vitesse sont sous-estimées ou plus dispersées par rapport aux mesures de référence. Des relations de vitesse indice sont toutefois établies en fonction de l'intensité et de la concentration afin de corriger les vitesses. La concentration en MES est déterminée à partir de l'atténuation acoustique qui est importante pour des suspensions concentrées de limons (> ~100 mg/L). Les constantes d'atténuation sont obtenues par calage sur des mesures de turbidité~; elles sont proches des valeurs théoriques calculées pour les distributions granulométriques des particules primaires. Les mesures acoustiques de concentration sont en bon accord avec les mesures de référence et reproduisent finement la dynamique temporelle. En outre, l'évolution de la granulométrie est étudiée à partir des mesures multi-fréquences d'atténuation sous l'hypothèse que les distributions granulométriques sont lognormales. Cette étude montre qu'une fois que les conditions limites pour des mesures fiables sont bien établies, le H-ADCP est un outil performant pour le suivi des flux d'eau et de MES dans les rivières, surtout pendant des périodes de fortes concentrations telles que des crues. / The work investigates the feasibility of using horizontal acoustic Doppler current profilers (H-ADCPs) to monitor fluxes of water and suspended sediment in rivers. Year-long data sets acquired with H-ADCPs operating at 300, 600 and 1200 kHz at four sites with varying geometries and flow forcing conditions on the Rhône, Saône and Isère rivers are analyzed. Findings show that limited depth can pose a problem due to scattering of a fraction of the acoustic energy from the air-water interface. A second problem arises when the backscattered intensity from the suspended sediment is too weak; this leads to underestimation or higher variability of the velocity estimates compared to reference values. Nevertheless, index-velocity relationships are established as a function of concentration and intensity in order to correct the velocity measurements. Concentrations of suspended sediment can be determined from the acoustic attenuation, which is substantial for silt-sized particles at concentrations > ~100 mg/L. Attenuation constants obtained by comparison with turbidity data are in good agreement with the theoretical values calculated for the measured grain size distributions of the primary particles. The acoustic measurements of concentration are in good agreement with reference methods in terms of both amplitude and temporal resolution. Grain size is determined from multi-frequency attenuation data, accounting for lognormal grain size distributions. Our findings show that once the limits of accurate velocity measurements are well established for a given site and instrument, the side-looking ADCP can be a valuable tool for monitoring concentration and changes in grain size throughout high concentration events such as floods.
57

Silicate weathering in the Himalayas : constraints from the Li isotopic composition of river systems

Bohlin, Madeleine Sassaya January 2018 (has links)
Chemical weathering of silicate rock consumes atmospheric CO2 and supplies the oceans with cations, thereby controlling both seawater chemistry and climate. The rate of CO2 consumption is closely linked to the rate of CO2 outgassing from the planetary interior, providing a negative feedback loop essential to maintaining an equable climate on Earth. Reconstruction of past global temperatures indicates that a pronounced episode of global cooling began ~50 million years ago, coincident with the collision of India and Asia, and the subsequent exhumation of the Himalayas and Tibet. This has drawn attention to the possible links between exhumation, erosion, changes in silicate weathering rates, and climate. However, many of the present-day weathering processes operating on the continents remain debated and poorly constrained, hampering our interpretations of marine geochemical archives and past climatic shifts. To constrain the controls on silicate weathering, this thesis investigates the lithium (Li) isotopic composition of river waters, suspended sediments and bed load sediments in the Alaknanda river basin, forming the headwaters of the Ganges. Due to the large fractionation of Li isotopes in the Earth’s surface environment, Li is sensitive to small changes in silicate weathering processes. As a consequence of the pronounced gradients in climate (rainfall and temperature) and erosion across the basin, the river waters show large variations in their Li isotopic composition (δ7Li), ranging from +7.4 to +35.4‰, covering much of the observed global variation. This allows a detailed investigation of the controls on Li isotope fractionation, and by extension silicate weathering. The Li isotopic composition is modelled using a one-dimensional reactive transport model. The model incorporates the continuous input of Li from rock dissolution, removal due to secondary mineral formation, and hydrology along subsurface flow paths. Modelling shows that the Li isotopic variations can be described by two dimensionless variables; (1) the Damköhler number, ND, which relates the silicate dissolution rate to the fluid transit time, and (2) the net partition coefficient of Li during weathering, kp, describing the partitioning of Li between secondary clay minerals and water, which is primarily controlled by the stoichiometry of the weathering reactions. The derived values of the controlling parameters ND and kp, are investigated over a range of climatic conditions and on a seasonal basis, shedding light onto variations in the silicate weathering cycle. In a kinetically limited weathering regime such as the Himalayan Mountains, both climate and erosion exert critical controls the weathering intensity (the fraction of eroded rock which is dissolved) and the weathering progression (which minerals that are being weathered), and consequently the fractionation of Li isotopes and silicate weathering in general. Modelling of the Li isotopic composition provides an independent estimate of the parameters which control silicate weathering. These estimates are then used to constrain variables such as subsurface fluid flux, silicate dissolution rates, fluid transit times and the fraction of rock which is weathered to form secondary clay minerals. The simple one-dimensional reactive transport model therefore provides a powerful tool to investigate the minimum controls on silicate weathering on the continents.
58

A Process-Based Model for Beach Profile Evolution

Demir, Huseyin 17 September 2007 (has links)
Beach profile models predict the changes in bathymetry along a line perpendicular to the shoreline. These models are used to forecast bathymetric changes in response to storms, sea level rise or human activities such as dredging and beach nourishment. Process-based models achieve this by simulating the physical processes that drive the sediment transport as opposed to behavior models which simulate observed profile changes without resolving the underlying processes. Some of these processes are wave shoaling and breaking, boundary layer streaming, and offshore-directed undertow currents. These hydrodynamic processes control the sediment processes such as sediment pick-up from the bottom, diffusion of the sediment across the water column and its advection with waves and currents. For this study, newly developed sediment transport and boundary layer models were coupled with existing models of wave transformation, nearshore circulation and bathymetry update, to predict beach profile changes. The models covered the region from the dry land to a depth of 6-8 meters, spanning up to 500 meters in the cross-shore direction. The modeling system was applied at storm time scales, extending from a couple of hours to several days. Two field experiments were conducted at Myrtle Beach, SC, involving the collection of wave, current and bathymetric data as a part of this study. The results were used to calibrate and test the numerical models along with data from various laboratory studies from the literature. The sediment transport model computes the variation of sediment concentrations over a wave period and over the water column, solving the advection-diffusion equation using the Crank-Nicholson finite-difference numerical scheme. Using a new approach, erosion depth thickness and sediment concentrations within the bed were also predicted. The model could predict sediment transport rates for a range of conditions, within a factor of two. It successfully computed the sediment concentration profile over the water column and within the bed and its variation throughout a wave period. Erosion depth and sheet flow layer thickness were also predicted reasonably well. Wave heights across the profile were predicted within ten percent when the empirical wave breaking parameter was tuned appropriately. Mean cross-shore velocities contain more uncertainty, even after tuning. The importance of capturing the location of the maximum, near-bottom, cross-shore velocity when predicting bar behavior was shown. Bar formation, erosion, accretion, onshore and offshore bar movement were all computed with the model successfully
59

Développement d'un système de caractérisation des agrégats et des flocs en suspension / Development of a suspended aggregates and flocs carracterisation system

Wendling, Valentin 06 February 2015 (has links)
L'évolution des caractéristiques des particules en suspension au cours de leur transfert au sein des bassins versants est encore mal connue. Ceci limite actuellement notre aptitude à prédire correctement l'érosion ou les flux de matières en suspension (MES) et rend difficile la proposition de pratiques de gestion adaptées aux réglementations en vigueur. A partir d'expériences en milieu contrôlé, nous avons montré que les particules de sols ont tendance à se désagréger en milieu turbulent. Il semble de plus qu'une augmentation de la concentration en suspension accélère cette désagrégation et conduise à des particules plus fines. Même si l'évolution des particules à l'échelle horaire semble rester de second ordre derrière les caractéristiques des sols sources, il est indispensable de pouvoir vérifier si les particules en suspension se comportent de la même manière en conditions naturelles où des interactions complexes entre processus peuvent avoir lieu. Cependant l'absence de méthode de mesure permettant le suivi des propriétés de transport des sédiments en écoulements très concentrés (de 1 plusieurs centaines de grammes par litre) dans les bassins élémentaires limite notre capacité à hiérarchiser les processus à considérer pour modéliser le transfert sédimentaire ou améliorer la gestion opérationnelle des sédiments. Afin de répondre à ce besoin instrumental, nous avons développé un Système de Caractérisation des Agrégats et des Flocs (SCAF). Cet instrument est conçu pour être incorporé dans les stations de suivi hydro-sédimentaire. La mesure est réalisée immédiatement après prélèvement d'un échantillon de la suspension à caractériser par une série de capteurs optiques qui suivent l'évolution de l'absorbance optique durant la sédimentation de l'échantillon. Nous proposons une méthode de traitement des données optiques donnant accès à la distribution des vitesses de chute de la suspension ainsi qu'à un indice de floculation qui renseigne sur la capacité des MES à floculer durant leur sédimentation. Les distributions de vitesses de chute mesurées sont validées sur une large gamme de matériaux et de régimes de sédimentation, afin de couvrir la variabilité des types de matériaux et des concentrations observées en milieu naturel. Pour des sédiments non cohésifs ou floculant peu durant leur sédimentation les mesures du SCAF s'ajustent sur celles issues des autres méthodes. Pour les suspensions qui floculent durant leur sédimentation, la plupart des méthodes de mesure classiques conduisent à des vitesses de chute non représentatives de la suspension. Nous avons montré que les variations des propriétés optiques des matières en suspension lors de leur floculation impactent nos mesures. La méthode proposée permet cependant de quantifier l'augmentation des vitesses de chute avec la floculation, et d'encadrer l'incertitude des mesures. Pour les mesures à forte concentration (>10 g/l), un front d'entravement peut se former durant la sédimentation, le SCAF mesurant alors précisément les vitesses de chute du front. La mesure des distributions des vitesses de chute et de la cohésion des particules en suspension peut permettre d'identifier différentes populations de particules formant une suspension (grains de sables, flocs, matières fines...). Le suivi de telles informations au sein de bassins versants ouvre de nouvelles perspectives pour aborder la connectivité sédimentaire et s'orienter vers une gestion optimale des flux de MES. / Little is known about the processes that govern the evolution of suspended particle characteristics during their transport through a river basin. This is a main limitation for modelling erosion severity or suspended solids (SS) fluxes. It also leads to difficulties to propose management policies adapted to environmental legislation. Based on experiments in controlled environments, we have shown that soil particles tend to disaggregate in turbulent flows. The increase in SS concentration was associated to an increase of the disaggregation of SS particles, leading to smaller final particle sizes. Laboratory experiments also showed that the variability of the particle sizes due to their evolution over one hour was smaller than the variability due to the soil type from which the particles originated. However it is important to ensure that the suspended particles behave in the same way in natural conditions, where complex interactions between hydraulic, chemical and biological processes can influence their evolution. Up to now no measurement method allows measuring continuously the suspended sediment properties in highly concentrated fluids (from one to hundreds grams per liter), such as those observed in headwater catchments during runoff events. This severely limits the possibility to identify the processes that are important to consider in numerical models. The Aggregate and Floc Characterization System (SCAF) has been developed in order to measure SS properties for a wide range of SS concentrations. It was designed to be easily incorporated into sequential samplers. Immediately after the collection of a sample from the river, the sedimentation of the suspension is recorded by continuous measurements of the absorbance by a series of optical sensors. A method was proposed to processes the raw optical data in order to obtain the settling velocity distribution of the suspension. It also provides a flocculation index representing the tendency of the particles to flocculate during their sedimentation. The calculated settling velocity distributions were validated on a large range of materials and settling regimes in order to cover the natural variability of suspended sediments. For sediments that hardly flocculate during their sedimentation or are non-cohesive, the measurements of the SCAF were similar to those from other methods. In the case of suspensions that strongly flocculate during sedimentation, most of the classical methods give non-representative falling velocities. In this case, the optical property of the particles may vary during settling, affecting the optical measurement. The proposed method allowed quantifying the increase of settling velocity induced by flocculation, and provided confidence intervals for the settling velocities. For high SS concentrations ( > 10 g/l), a settling front can be formed during the sedimentation, which is well characterized by the SCAF. The measurement of the settling velocity distributions and of the flocculation index can be used to identify different particle populations (sand grains, flocs, individual particles) forming a suspension. Monitoring these properties in watersheds offers new insights to explore sediment connectivity within river basins and to optimize water management strategies.
60

Numerical modelling of the interaction between tidal stream turbines and the benthic environment

Haverson, David Thomas January 2017 (has links)
The tidal stream industry has seen large growth in recent years, and the number of pre-commercial scale devices currently being tested reflects this development. However, commercialising this technology whilst showing that their environmental impacts is minimal remains a challenge. The impact on benthic communities is not considered to be a key strategic consenting issue, yet it is anticipated that the benthic habitat will change as a result of the presence of tidal turbines. To date, only single tidal turbine devices have been installed to demonstrate the application of tidal stream technology but despite successful tests there are still uncertainties surrounding the quantitative impacts these turbines have on local benthic communities. Unlike the wind industry, where physical effects of wind turbines have been catalogued through deployment of thousands of turbines, the tidal stream industry lacks these array scale quantitative data. Local impacts are known, but understanding the scale of the impacts and their relative significance of large arrays remains unknown. Tidal turbines (both single and arrays) interact with the hydrodynamics by decreasing the near field current flow directly in its wake through energy extraction and the drag caused by the physical structure. However, turbines may also affect the far field hydrodynamics, altering bed characteristics, sediment transport regimes and suspended sediment concentrations. As benthic habitats are closely linked to the physical seabed composition and the hydrodynamic conditions, the benthic environment is affected by to changes in the current flow. This thesis presents a series of studies investigating the interaction between tidal turbines and the benthic environment. Based on the hydrodynamic modelling software, TELEMAC2D, a numerical model has been developed to investigate the hydrodynamic impact of a single tidal array at Ramsey Sound, Pembrokeshire as well as the cumulative impact of multiple tidal developments in the Irish Sea. Based on the results of the models, the hydrodynamic outputs were used as inputs to drive a species distribution model, based on the software MaxEnt, to investigate how the distribution of benthic species altered in the presence of a 10MW tidal array at Ramsey Sound. Results of the study showed the development would have a minimal negative impact on the benthic environment.

Page generated in 0.0671 seconds