• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 453
  • 221
  • 205
  • 101
  • 40
  • 35
  • 20
  • 13
  • 12
  • 9
  • 7
  • 6
  • 5
  • 4
  • 3
  • Tagged with
  • 1312
  • 172
  • 154
  • 106
  • 88
  • 86
  • 83
  • 73
  • 72
  • 68
  • 66
  • 64
  • 59
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Feasibility of Restricted Driver Licenses for Suspended New Jersey Drivers

Kusano, Stephanie Marie 11 September 2012 (has links)
In 2010, there were 6,714,288 total registered drivers in New Jersey. Approximately 4% (267,485) of these drivers had a suspended driver's license. The intent of suspending a driver's license is to keep hazardous drivers off of the roads, in hopes of having a safer driving environment for others on the road. Drivers in New Jersey can have their driver's license suspended for a number of reasons. These include dangerous driving behaviors such as reckless driving and driving under the influence of alcohol or drugs. However, there are also reasons for suspension that have little or nothing to do with driver behavior, such as failure to pay child support, failure to pay MVC insurance surcharge, or failure to appear in court. While these offenses are all due of consequence, they have little or nothing to do with driver behavior. This research program will conduct an analysis of the issues and implications of implementing a restricted-use license program for suspended New Jersey drivers, detailing key issues associated with restricted-use license programs. It was found that over two-thirds of suspended drivers in New Jersey receive driver's license suspensions for both driving and non-driving-related offenses, whereas only about four-percent of suspended drivers in New Jersey receive a driver's license suspension for driving-related reasons only. It was also found that drivers suspended for non-driving related reasons have different driver behavior than drivers suspended for driving related reasons. Surveying both New Jersey police chiefs, as well as U.S. state motor vehicle agencies, it was found that there is a generally positive perception of restricted driver's license programs. Overall, it is recommended that the New Jersey Motor Vehicle Commission implement a restricted driver's license program in New Jersey. / Master of Science
332

Design and Qualification of a Test Fixture to Experimentally Determine Global Tire Force Properties

Cauthen, Rea Kimbrell III 03 April 2014 (has links)
The advent of finite element methods has changed the tire industry's design process over the past three decades. Analyses, previously impractical using analytical methods and physically limited by experimental methods, can now be performed using computational methods. This decreases the cost and time associated with bringing a new design to the marketplace; however some physical testing is still required to validate the models. The design, fabrication, installation, and operation of a tire, suspension, and chassis test fixture (TiSCTeF) is detailed as part of this study. This fixture will support the validation of effective, parametric finite element models currently under development, as well as the design and testing of suspension and chassis components for the Virginia Tech Formula SAE team. The fixture is designed to use the Formula SAE race car as the test platform. Initially, the fixture is capable of performing static load-deflection and free-rolling tire tests. Provision has been made in the design for incremental upgrades to support cornering tests and additional instrumentation. An initial load-deflection test has proven that the fixture is capable of creating reproducible data sets. Specific recommendations are made concerning the improvement of data quality for future tests. This study also presents a process for analyzing existing tire cornering data and eliminating anomalies to improve the effectiveness of normalization techniques found in the literature. The process is shown to collapse tire cornering data, which is partially ill- conditioned, onto master curves that consistently display the effect of inclination angle and tire inflation pressure on tire response. / Master of Science
333

A Structured Approach to Defining Active Suspension Requirements

Rao, Ashwin M. 13 August 2016 (has links)
Active suspension technologies are well known for improving ride comfort and handling of ground vehicles relative to passive suspensions. They are ideally suited for mitigating single-event road obstacles. The work presented in this thesis aims to develop a structured approach for finding the peak force and bandwidth requirements of actuators for active suspensions, to mitigate single-event road obstacles. The approach is kept general to allow for application to different vehicle models, ride conditions and performance objectives. The current state-of-art in active suspensions was first evaluated. Based on these findings, the objectives of the simulation models and approach was defined. A quarter-car model was developed in Matlab to simulate the behavior of active suspensions over unilateral boundary conditions due to different road obstacle profiles. The obstacle profiles were obtained from existing standards and literature and then processed to replicate the interaction of tires on road. A least-mean-squares (LMS) algorithm for adaptive filtering, with the help of look-ahead preview was used to determine the ideal control force profile to achieve the performance objective of the active suspension. A case study was conducted to determine the requirements of the actuator in terms of bandwidth and peak force for different single-event road obstacle profiles, vehicle speeds and look-ahead preview distances. The results of the study show that the vehicle velocity and type of road obstacle have a strong influence on the required peak force and bandwidth of the actuator, while look-ahead preview will be much more important for real time controller implementation. / Master of Science
334

Flow Characterization and Redesign of Load-Leveling Valves for Improving Transient Dynamics of Heavy Truck Air Suspensions

Zhu, Zebo 08 December 2016 (has links)
This research provides a thorough flow characterization study to compare the functionality of two types of load-leveling valves that are commonly used for air suspension systems of commercial trucks. The first valve features a simple disk/slot design and is relatively compact for installation. The second type is larger and has a sophisticated, chambered design, which allows for considerably quicker fill and exhaust response times in the transient region. A new approach is introduced to estimate the transient mass flow rate of a load-leveling valve under different suspension pressures, without requiring a mass flow meter. An extensive series of dynamic tests are conducted to characterize and compare the two load-leveling valves. A generic heavy-truck pneumatic suspension, consisting of load-leveling valves, airspring, air tank, and air-hose fittings, is configured for testing. The test setup is used to evaluate the transient performance of each type of load-leveling valve in a typical truck suspension. The flow behavior of the system is validated by the force/pressure responses of the air spring due to various displacement excitations. The experimental results describe the detailed flow behavior of both valves. The flow characterization results can be incorporated as one of the most critical parameters for future model development of pneumatic systems. The tests indicate that the leveling valve with chambered design has a far faster transient flow response than the disk valve, although it is more complicated in its mechanical design and therefore costs more. To take advantage of the design simplicity of the disk valve, while also enabling it to have a faster transient response (compared with the chambered design), it is re-designed with larger flow openings and other elements to match the performance of the chambered valve for transient flow. A comparison of the experimental results and simulations validates that the re-designed rotary disk valve performs nearly the same as the chambered valve, but is simpler and costs less. The study's results are directly applicable to improving the transient dynamics of heavy truck air suspensions by providing a better understanding of how load-leveling valves can be used not only to provide ride-height control, but also to influence the roll and pitch dynamics of heavy trucks. / Master of Science
335

Simulation and Testing of Wave-Adaptive Modular Vessels

Peterson, Andrew William 20 January 2014 (has links)
This study provides a comprehensive performance analysis of Wave-Adaptive Modular Vessels (WAM-V) using simulations and testing data. WAM-Vs are a new class of marine technology that build upon the advantages of lightweight, low-draft, catamaran construction. Independent suspensions above the hulls isolate the passengers and equipment from the harsh sea environment. Enhanced understanding of the relationship between suspension and vehicle performance is critical for future missions of interest to the U.S. Navy. Throughout this study, the dynamic properties of three different WAM-Vs were evaluated. A multi-body dynamics simulation was developed for the 100-ft WAM-V 'Proteus' based on an automotive 4-post shaker rig. The model was used to characterize the sensitivities of different suspension parameters and as a platform for future models. A 12-ft unmanned surface vessel (USV) was instrumented and sea trials were conducted in the San Francisco Bay. A dynamic 4-post simulation was created for the USV using displacement inputs calculated from acceleration data via a custom integration scheme. The data was used to validate the models by comparing the model outputs to sensor data from the USV. A vertical hydrodynamics testing rig was developed to investigate the interaction between the pontoons and the water surface to improve the understanding of how hydrodynamic forces affect suspension performance. A model was created to accurately simulate the hydrodynamic forces that result from vertical pontoon motion. The model was then scaled to fit a 33-ft WAM-V prototype. The 33-ft WAM-V was instrumented and sea trials were conducted in Norfolk, VA. The WAM-V's suspension was upgraded based on the testing results. A 2-post rig was also built for evaluating the 33-ft WAM-V's dynamics. Two dynamic models were made for the 33-ft WAM-V to evaluate different suspension designs. The results from this study have numerous impacts on the naval community and on the development of WAM-Vs. The methodology for testing and evaluation will allow for future WAM-V designs to be compared under controlled circumstances. The performance of WAM-Vs can then be compared against conventional platforms to determine their suitability for future missions. Simulation development will enable future WAM-Vs to be evaluated prior to undergoing sea trials. The hydrodynamic models become a powerful design tool that can be easily scaled and combined with the 4-post models. By providing the simulations and test data to future vessel designers, the designers will be able to intelligently evaluate numerous iterations early in the design phase, improving performance and safety. / Ph. D.
336

Electromechanical Suspension-based Energy Harvesting Systems for Railroad Applications

Nagode, Clement Michel Jean 04 May 2013 (has links)
Currently, in the railroad industry, the lack of electrical sources in freight cars is a problem that has yet to find practical solutions. Although the locomotive generates electricity to power the traction motors and all the equipment required to operate the train, the electrical power cannot, in a practical manner, be carried out along the length of the train, leaving freight cars unpowered. While this has not been a major issue in the past, there is a strong interest in equipping modern cars with a myriad of devices intended to improve safety, operational efficiency, or health monitoring, using devices such as GPS, active RFID tags, and accelerometers. The implementation of such devices, however, is hindered by the unavailability of electricity. Although ideas such as Timken's generator roller bearing or solar panels exist, the railroads have been slow in adopting them for different reasons, including cost, difficulty of implementation, or limited capabilities. The focus of this research is on the development of vibration-based electromechanical energy harvesting systems that would provide electrical power in a freight car. With size and shape similar to conventional shock absorbers, these devices are designed to be placed in parallel with the suspension elements, possibly inside the coil spring, thereby maximizing unutilized space. When the train is in motion, the suspension will accommodate the imperfections of the track, and its relative velocity is used as the input for the harvester, which converts the mechanical energy to useful electrical energy. Beyond developing energy harvesters for freight railcar primary suspensions, this study explores track wayside and miniature systems that can be deployed for applications other than railcars. The trackside systems can be used in places where electrical energy is not readily available, but where, however, there is a need for it. The miniature systems are useful for applications such as bicycle energy. Beyond the design and development of the harvesters, an extensive amount of laboratory testing was conducted to evaluate both the amount of electrical power that can be obtained and the reliability of the components when subjected to repeated vibration cycles. Laboratory tests, totaling more than two million cycles, proved that all the components of the harvester can satisfactorily survive the conditions to which they are subjected in the field. The test results also indicate that the harvesters are capable of generating up to 50 Watts at 22 Vrms, using a 10-Ohm resistor with sine wave inputs, and over 30 Watts at peak with replicated suspension displacements, making them suitable to directly power onboard instruments or to trickle charge a battery. / Ph. D.
337

Using a Sliding Plate Rheometer to Obtain Material Parameters for Simulating Long Fiber Orientation in Injection Molded Composites

Cieslinski, Mark J. 22 September 2015 (has links)
This work is concerned with determining empirical parameters in stress and fiber orientation models required to accurately simulate the fiber orientation in injection molded composites. An independent approach aims to obtain the material parameters using a sliding plate rheometer to measure the rheology of fiber suspensions at increased fiber lengths subjected to transient shear flow. Fiber orientation was measured in conjunction with shear stress to determine the relationship between stress and fiber orientation. Using a compression molding sample preparation procedure, the transient shear stress response was measured for glass and carbon fiber suspensions up to a number average fiber aspect ratio (length/diameter) of 100. Increases in concentration or fiber aspect ratio caused the magnitude of the stress response to increase by as much as an order of magnitude when compared to the suspending matrix. The degree of shear thinning at low shear rates also increased with increases in aspect ratio and concentration. The compression molding sample preparation procedure provided poor control of the initial fiber orientation which led to the investigation of samples subjected to flow reversal and samples generated through injection molding. The samples prepared through injection molding provided improved repeatability in the measured shear stress response and fiber orientation evolution during the startup of flow compared to compression molded samples and samples subjected to flow reversal. From repeatable stress and orientation evolution data, models for stress and fiber orientation were assessed independently. Current theories for stress were unable to reflect the overshoot in the measured stress response and could at best capture the steady state. The transient behavior of the fiber orientation models were found to be highly dependent on the initial fiber orientation. The repeatable orientation data obtained from the injection molding sample preparation procedure provided material parameters in the strain reduction factor and reduced strain closure models. The injection molded samples provided evolution data from different initial fiber orientations to provide further scrutiny or validation of the material parameters. Orientation model parameters that provided reasonable agreement to multiple sets of fiber evolution data in simple shear flow should allow for a better assessment of the orientation models in complex flow simulations. / Ph. D.
338

Stratification in Drying Particle Suspensions

Tang, Yanfei 04 February 2019 (has links)
This thesis is on molecular dynamics studies of drying suspensions of bidisperse nanoparticle mixtures. I first use an explicit solvent model to investigate how the structure of the dry film depends on the evaporation rate of the solvent and the initial volume fractions of the nanoparticles. My simulation results show that the particle mixtures stratify according to their sizes when the suspensions are quickly dried, consistent with the prediction of recent theories. I further show that stratification can be controlled using thermophoresis induced by a thermal gradient imposed on the drying suspension. To model larger systems on longer time scales, I explore implicit solvent models of drying particle suspensions in which the solvent is treated as a uniform viscous background and the liquid-vapor interface is replaced by a potential barrier that confines all the solutes in the solution. Drying is then modeled as a process in which the location of the confining potential is moved. In order to clarify the physical foundation of this moving interface method, I analyze the meniscus on the outside of a circular cylinder and apply the results to understand the capillary force experienced by a spherical particle at a liquid-vapor interface. My analyses show that the capillary force is approximately linear with the displacement of the particle from its equilibrium location at the interface. An analytical expression is derived for the corresponding spring constant that depends on the surface tension and lateral span of the interface and the particle radius. I further show that with a careful mapping, both explicit and implicit solvent models yield similar stratification behavior for drying suspensions of bidisperse particles. Finally, I apply the moving interface method based on an implicit solvent to study the drying of various soft matter solutions, including a solution film of a mixture of polymers and nanoparticles, a suspension droplet of bidisperse nanoparticles, a solution droplet of a polymer blend, and a solution droplet of diblock copolymers. / PHD / Drying is a ubiquitous phenomenon. In this thesis, I use molecular dynamics methods to simulate the drying of a suspension of a bidisperse mixture of nanoparticles that have two different radii. First, I use a model in which the solvent is included explicitly as point particles and the nanoparticles are modeled as spheres with finite radii. Their trajectories are generated by numerically solving the Newtonian equations of motion for all the particles in the system. My simulations show that the bidisperse nanoparticle mixtures stratify according to their sizes after drying. For example, a “small-on-top” stratified film can be produced in which the smaller nanoparticles are distributed on top of the larger particles in the drying film. I further use a similar model to demonstrate that stratification can be controlled by imposing a thermal gradient on the drying suspension. I then map an explicit solvent system to an implicit one in which the solvent is treated as a uniform viscous background and only the nanoparticles are kept. The physical foundation of this mapping is clarified. I compare simulations using the explicit and implicit solvent models and show that similar stratification behavior emerge in both models. Therefore, the implicit solvent model can be applied to study much larger systems on longer time scales. Finally, I apply the implicit solvent model to study the drying of various soft matter solutions, including a solution film of a mixture of polymers and nanoparticles, a droplet of a bidisperse nanoparticle suspension, a solution droplet of a polymer blend, and a droplet of a diblock copolymer solution.
339

Estimation of Disturbance Inputs to a Tire Coupled Quarter-car Suspension Test Rig

Ziegenmeyer, Jonathan Daniel 24 May 2007 (has links)
In this study a real-time open loop estimate of the disturbance displacement input to the tire and an external disturbance force, representing handling and aerodynamic forces, acting on the sprung mass of a quarter-car suspension test rig was generated. This information is intended for use in active control methods applied to vehicle suspensions. This estimate is achieved with two acceleration measurements as inputs to the estimator; one each on the sprung and unsprung masses. This method is differentiated from current disturbance accommodating control, bilinear observers, and preview control methods. A description of the quarter-car model and the experimental test rig is given. The equations of motion for the quarter-car model are derived in state space as well as a transfer function form. Several tests were run in simulation to investigate the performance of three integration techniques used in the estimator. These tests were first completed in continuous time prior to transforming to discrete time. Comparisons are made between the simulated and estimated displacement and velocity of the disturbance input to the tire and disturbance force input to the sprung mass. The simulated and estimated dynamic tire normal forces are also compared. This process was necessary to select preliminary values for the integrator transfer function to be implemented in real-time. Using the acceleration measurements from the quarter-car test rig, a quarter-car parameter optimization for use in the estimator was performed. The measured and estimated tire disturbance input, disturbance input velocity, and dynamic tire normal force signals are compared during experimental tests. The results show that the open loop observer provides estimates of the tire disturbance velocity and dynamic tire normal force with acceptable error. The results also indicate the quarter-car test rig behaves linearly within the frequency range and amplitude of the disturbance involved in this study. The resultant access to the disturbance estimate and dynamic tire force estimate in real-time enables pursuit of novel control methods applied to active vibration control of vehicle suspensions. / Master of Science
340

Experimental Evaluation of a Trailing-Arm Suspension for Heavy Trucks

Glass, Jeffrey Lewis 22 May 2001 (has links)
This study includes an experimental evaluation of a prototype trailing-arm suspension for heavy trucks. The primary goal of this new suspension is to match or improve the kinematics and dynamic performance of an existing "Z-bar" suspension. Significant reductions in cost, weight, and number of parts are the main reasons for this redesign. A permanent facility is constructed to support the testing of different heavy truck suspensions. For actuation of the vehicle suspension, hydraulic actuators are used in the kinematics tests in a quasi-dynamic manner. For the dynamic tests, the vehicle is excited using two hydrodynamic actuators. A collection of forces, displacements, velocities, and accelerations are measured during the tests using transducers that were installed on the suspension and test vehicle. The test measurements are analyzed in both time and frequency domains and then the results of the two suspensions were compared to establish the dynamic merits of the prototype suspension. The kinematics tests include vertical stiffness, roll stiffness, and roll steer measurements for each suspension. The results from the kinematics tests show that the trailing-arm suspension exhibits kinematics traits that are quite similar to the "Z-bar" suspension, within the context of the tests conducted in the study. The dynamic testing consists of three input signals commonly used for such tests, namely: a chirp signal input, a step signal input, and a range of pure tone inputs. The test results show that the resonant frequencies of the two primary suspensions differ by an amount that is most likely too small to affect ride dynamics. The two suspensions, however, exhibit significantly different damping characteristics. The new suspension has much less frictional damping than the existing suspension. This is expected to provide better ride characteristics, assuming that the primary dampers (shock absorbers) are properly tuned for the vehicle that the new suspension was designed for. / Master of Science

Page generated in 0.0875 seconds