1 |
Suzuki reactions in novel liquidsHassanzadeh, Nazanin January 2021 (has links)
Non-ionic deep eutectic solvent (ni-DES) possesses various advantages such as good solvation, biodegradability, and non-toxicity which makes it a perfect and environmentally friendly solvent for organic synthesis. A Pd (OAc)2 catalyzed, Suzuki reaction of aryl bromide and N-heteroaryl halide with arylboronic acid in green and novel solvent (ni-DES) is described. In this work, the possibility of using ni-DES and the impact of this solvent on the scope of the reaction is studied. It is illustrated that using the mixture of N-alkyl derivatives of urea and acetamide as a green solvent for Suzuki reaction is achievable even though the desired amount of product was not obtained. However, the high yield in ni-DES can be obtained by choosing 4-bromobenzotrifluoride or 4-bromoanisole as the aryl bromide with arylboronic acid that possess the electron donating groups. Despite that, for getting more yield through Suzuki reaction in ni-DES more studies on optimization are required.
|
2 |
肝臓の有機アニオントランスポーター機能のインビボ評価のための核医学分子イメージングプローブの開発に関する研究屋木, 祐亮 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬学) / 甲第18550号 / 薬博第812号 / 新制||薬||238(附属図書館) / 31450 / 京都大学大学院薬学研究科医療薬科学専攻 / (主査)教授 佐治 英郎, 教授 橋田 充, 教授 髙倉 喜信 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
|
3 |
Further Exploring the Structure Activity Relationship (SAR) of MMV008138 and MMV1803522Li, Haibo 06 June 2023 (has links)
The war between human and malaria has never stopped, and the development and application of antimalarial drugs has not eradicated this terrible disease. To fight drug-resistant malaria, many leads have been studied over the years. (1S,3R)-MMV008138 and MMV1803522 are two compounds that have been studied in the Carlier Group. My research focused on the structural variation of each of these compounds, in the hope that greater potency could be realized.
Chapter 2 describes my work on (1S,3R)-MMV008138, which inhibits the enzyme PfIspD in the methylerythritol phosphate (MEP) pathway. This compound shows good in vitro potency against the drug resistant Dd2 strain of Plasmodium falciparum. However, this lead showed no activity in mouse models. This lack of activity may be due to poor metabolic stability of the compound. However, a significant increase in in vitro potency could also improve in vivo activity. Towards that end, I focused on further variation of the D-ring and A-rings. With the regard to the D-ring, we made five analogs of MMV008138 that replaced the 2,4-dichlorophenyl ring with dihalogenated thiophen-3-yl and thiophen-2-yl rings. We also explored the effect of installing a cyano group on the A-ring of MMV008138. Unfortunately, none of these new compounds were potent growth inhibitors of Dd2 strain P. falciparum. We conclude that the lead goes into a well-defined pocket within the PfIspD enzyme that only accommodates 2,4-dihalogenated phenyl D-rings. This pocket also cannot accept any substitution larger than F on the A-ring. Interestingly, the crystal structure of 5-cyano-substituted MMV008138 was obtained ((±)-2-50c). This is the first compound out of more than 100 analogs of MMV008138 family to be amenable to crystallization. The solid state conformation of the (±)-2-50c revealed that the C3-carboxyl group was in a pseudoequatorial orientation, and the C1-aryl group was thus in a pseudoaxial orientation. 1H NMR spectroscopic studies in CD3OD-D2O were carried out to determine the solution conformation. As expected from previous studies of ester derivatives of MMV008138, these studies indicated that in solution, 2-5 would adopt both the C3-carboxyl pseudoequatorial and pseudoaxial conformations.
In Chapter 3, I describe the synthesis of analogs of the antimalarial drug candidate MMV1803522. This β-carboline-3-carboxamide shows good in vitro growth inhibition potency of Dd2 strain P. falciparum, operating by a still unknown mechanism. To investigate the pharmacophore of this lead, I first sought to determine whether the pyridine N (i.e. N2) of the β-carboline was important for in vitro potency. I prepared series of carbazole analogs of MMV1803522, which replace N2 with a CH. These compounds potently inhibited the growth of Dd2 strain P. falciparum. These results suggest that N2 of MMV1803522 is not involved in any energetically significant interactions with its target protein. To further identify the pharmacophore, we prepared truncated analogs lacking the A- and B- rings (biphenyl analogs), and tricyclic analogs that feature a reversed indole moiety. Unfortunately, the biphenyl analogs and reversed indole analogs show no growth inhibition at 10,000 nM the highest concentration tested. Lastly, I describe analogs of MMV1803522 in which the 3,4-dichlorophenyl ring of MMV1803522 was replaced with halogenated thiophene. This substitution was tolerated, but compounds were roughly half as potent as MMV1803522. / Doctor of Philosophy / Malaria, mainly caused by the infection of P. falciparum, is a serious worldwide disease. In 2020, there were 241 million cases of malaria infections and over 600,000 deaths from malaria. Combinations of commercially available antimalarial compounds, such as chloroquine, mefloquine and artemisinin, are commonly used as combination therapies to treat malaria. Since different antimalarial compounds have different mechanisms of action, this combination strategy can greatly slow down the spread of drug-resistant parasites. However, multiple drug-resistant strains of P. falciparum have been reported. Therefore, there is an urgent need for new antimalarial compounds with novel mechanisms of action. This dissertation involves my research on the investigation and optimization of two novel antimalarial compounds, MMV008138 and MMV1803522.
MMV008138 is an inhibitor of the MEP pathway, which is an essential metabolic pathway and attractive target for antimalarial therapies, in malaria parasites. The parasites cannot survive, with the MEP pathway inhibited. Since the MEP pathway is not present in human, the MMV008138 molecule is unlikely to have toxicity to human. The MMV008138 molecule has been demonstrated to have great in vitro performance of inhibiting the MEP pathway in several studies, however, the in vivo performance in mouse models is yet to improve. This may be due to the poor metabolic stability of this compound. The compound decomposes in the mouse body before it takes effect. To enhance the metabolic stability and potency, I performed chemical modifications on the A- and D-rings of the MMV008138 compound. An X-ray crystal structure was obtained to help elucidate the conformer distribution of MMV008138. This crystal structure can be used to guide our understanding of the docking of this compound to the target enzyme in the future.
MMV1803522 is another compound that shows great potency in vitro and in vivo. This compound is fully oxidized and contains four aromatic rings. However, the target enzyme and the mechanism of action of MMV1803522 is yet to be discovered, and the structure-activity relationship between the chemical structure and the biological activity of this molecule is still unknown. Therefore, I have developed synthetic methods to synthesize a series of compounds that are structurally similar to the MMV1803522 and found that potency of this molecule is not due to the nitrogen on the C-ring. Also, the number and size of the ring structures in the MMV1803522 may be crucial for this molecule to exhibit great potency in vitro and in vivo.
|
4 |
Photophysics of Thiophenosalicylaldimine-functionalized G1-Polyprolyleniminato-Copper Telluride/Antimonide core-shell NanomaterialsRamoroka, Morongwa Emmanuel January 2018 (has links)
Magister Scientiae - MSc (Chemistry) / This work involves the synthesis of copper telluride-polypropylenimine tetra(5-(2-thienyl)
salicylaldimine) (CuTe@PPI) and copper antimonide-polypropylenimine tetra(5-(2-thienyl)
salicylaldimine) (CuSb@PPI) core-shell nanoparticles (NPs), using two-pots and one-pot
synthesis methods, respectively. Their morphology was studied by X-ray diffraction
spectroscopy (XRD), high resolution transmission electron microscopy (HRTEM) and high
resolution scanning electron microscopy (HRSEM); while their structures were characterized by
Fourier transform infrared spectroscopy (FTIR) and elemental analysis. Photophysical properties
of the core-shell NPs were determined from ultraviolet-visible absorption spectroscopy (UV-Vis)
and photoluminescence spectroscopy (PL). For core-shell NPs produced via two-pots method
only CuTe@PPI exhibited ? ? ?* and n ? ?* which indicate that CuSb@PPI produced via
two-pots method was unsuccessfully synthesized. The ? ? ?* and n ? ?* transitions indicate
the presence of polypropylenimine tetra(5-(2-thienyl) salicylaldimine) (PPI) on the surface of
CuTe NPs and CuSb NPs. FTIR confirmed coordination of PPI on the surface of CuTe NPs and
CuSb NPs by showing a shift in wavenumber of C=N group bands from PPI. HR-TEM showed
that the CuTe@PPI synthesized via one-pot method have a wide particles sizes distribution with
an average particles size of 13.60 nm while for CuTe@PPI synthesized via two-pots it was
impossible to determine the particles size due to aggregation. CuSb@PPI synthesized via twopots
method and one-pot method has a wide particles sizes distribution with an average size of
7.98 nm and 11.61 nm respectively. The average particles sizes determined by HR-SEM were
found to be 35.24 nm (CuTe@PPI two-pots method), 33.90 nm (CuTe@PPI one-pot method),
18.30 nm (CuSb@PPI two-pots method), and 16.18 nm (CuSb@PPI one pot method). / 2021-08-31
|
5 |
Nanoparticles as Reactive Precursors: Synthesis of Alloys, Intermetallic Compounds, and Multi-Metal Oxides Through Low-Temperature Annealing and Conversion ChemistryBauer, John C. 2009 May 1900 (has links)
Alloys, intermetallic compounds and multi-metal oxides are generally made by
traditional solid-state methods that often require melting or grinding/pressing powders
followed by high temperature annealing (> 1000 degrees C) for days or weeks. The research
presented here takes advantage of the fact that nanoparticles have a large fraction of their
atoms on the surface making them highly reactive and their small size virtually
eliminates the solid-solid diffusion process as the rate limiting step. Materials that
normally require high temperatures and long annealing times become more accessible at
relatively low-temperatures because of the increased interfacial contact between the
nanoparticle reactants.
Metal nanoparticles, formed via reduction of metal salts in an aqueous solution
and stabilized by PVP (polyvinylpyrrolidone), were mixed into nanoparticle composites
in stoichometric proportions. The composite mixtures were then annealed at relatively
low temperatures to form alloy and intermetallic compounds at or below 600 degrees C. This
method was further extended to synthesizing multi-metal oxide systems by annealing metal oxide nanoparticle composites hundreds of degrees lower than more traditional
methods.
Nanoparticles of Pt (supported or unsupported) were added to a metal salt
solution of tetraethylene glycol and heated to obtain alloy and intermetallic
nanoparticles. The supported intermetallic nanoparticles were tested as catalysts and
PtPb/Vulcan XC-72 showed enhanced catalytic activity for formic acid oxidation while
Pt3Sn/Vulcan XC-72 and Cu3Pt/y-Al2O3 catalyzed CO oxidiation at lower temperatures
than supported Pt.
Intermetallic nanoparticles of Pd were synthesized by conversion chemistry
methods previously mentioned and were supported on carbon and alumina. These
nanoparticles were tested for Suzuki cross-coupling reactions. However; the
homocoupled product was generally favored. The catalytic activity of Pd3Pb/y-Al2O3
was tested for the Heck reaction and gave results comparable to Pd/y-Al2O3 with a
slightly better selectivity.
Conversion chemistry techniques were used to convert Pt nanocubes into Ptbased
intermetallic nanocrystals in solution. It was discovered that aggregated clusters
of Pt nanoparticles were capable of converting to FePt3; however, when Pt nanocubes
were used the intermetallic phase did not form. Alternatively, it was possible to form
PtSn nanocubes by a conversion reaction with SnCl2.
|
Page generated in 0.1024 seconds