• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactions of hydrometeorological processes and debris-flow activity in two Alpine catchments

Sartorius, Olivia Debora January 2019 (has links)
No description available.
2

Development and Validation of a Physically Based ELA Model and its Application to the Younger Dryas Event in the Graubünden Alps, Switzerland

Keeler, Durban Gregg 01 November 2015 (has links)
The rapid rate of global warming currently underway highlights the need for a deeper understanding of abrupt climate change. The Younger Dryas is a Late-Glacial climate event of widespread and unusually rapid change whose study can help us address this need for increased understanding. Reconstructions from the glacial record offer important contributions to our understanding of the Younger Dryas due to (among other things) the direct physical response of glaciers to even minor perturbations in climate. Because the glacier equilibrium line altitude (ELA) provides a more explicit comparison of climate than properties such as glacier length or area, ELA methods lend themselves well to paleoclimate applications and allow for more direct comparisons in space and time. Here we present a physically based ELA model for alpine paleoglacier climate reconstructions that accounts for differences in glacier width, glacier shape, bed topography and ice thickness, and includes error estimates using Monte Carlo simulations. We validate the ELA model with published mass balance measurements from 4 modern glaciers in the Swiss Alps. We then use the ELA model, combined with a temperature index model, to estimate the changes in temperature and precipitation between the Younger Dryas (constrained by 10Be surface exposure ages) and the present day for three glacier systems in the Graubünden Alps. Our results indicate an ELA depression in this area of 320 m ±51 m during the Younger Dryas relative to today. This ELA depression represents annual mean temperatures 2.29 °C ±1.32 °C cooler relative to today in the region, which corresponds to a decrease in mean summer temperatures of 1.47 °C ±0.73 °C. Our results indicate relatively small changes in summer temperature dominate over other climate changes for the Younger Dryas paleoglaciers in the Alps. This ELA-based paleoclimate reconstruction offers a simple, fast, and cost-effective alternative to many other paleoclimate reconstruction methods. Continued application of the ELA model to more regions will lead to an improved understanding of the Younger Dryas in the Alps, and by extension, of rapid climate events generally.
3

THE IMPACT OF MELTING GLACIERS ON MOUNTAIN GROUNDWATER SYSTEMS: A MULTI-YEAR STUDY INCORPORATING ISOTOPIC TRACERS AND MICROBIOLOGY IN MOUNT HOOD NATIONAL FOREST, OREGON, AND GLACIER NATIONAL PARK, MONTANA, AND TIME SERIES ANALYSES IN THE SWISS ALPS

Jordyn B Miller (11852195) 17 December 2021 (has links)
<p>Alpine glaciers around the world are in retreat and are unlikely to reverse course. This dissertation focuses on improving our understanding of the impact of glacial melt on mountainous alpine groundwater systems. Studies on glacial melt-groundwater interactions have become more prevalent, particularly in the past 5 years, because we are recognizing that the contribution of glacial melt to the hydrologic cycle is not limited to melt-season surficial streamflow. The importance of glacial melt to mountain groundwater systems has the potential to not only influence spring and streamflow generation, but also the longevity of alpine specific, and frequently endangered species, dependent on this source of recharge. This recharge may be vital for human water needs such as potable water, agriculture, and hydrothermal power.</p>The impact that a transition from glacial melt to snow- or rain-dominated streamflow and recharge will have on alpine ecosystems in a continually warming climate is far reaching. This dissertation: 1) tests whether glacial melt is an important source of recharge for mountain springs and their microbial communities, 2) investigates the spatial impact of glacial-melt recharge on residence times and flowpaths that support alpine springs, and 3) explores the impact of post-peak water on alpine baseflow using a statistical, timeseries approach. My results show that the groundwater systems in glaciated mountainous, alpine regions are particularly vulnerable to climate change. Springs in Mount Hood National Forest and Glacier National Park were sampled over a 4-year period, and in addition, publicly available long-term streamflow datasets were are also utilized. The chapters composing this work build upon each other, and compare and contrast the factors most important in glacial melt recharging the mountain-block. Information that is vital to the management of alpine water resources by landowners, watershed groups, scientists, and others interested in mountain groundwater systems in glaciated alpine regions is presented in the following pages.

Page generated in 0.0523 seconds