• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stability and Switchability in Recurrent Neural Networks

Perumal, Subramoniam January 2008 (has links)
No description available.
2

Light induced textile substrate with switchable and reversible wettability : Development of a switchability and reversibility effect between hydrophobic and hydrophilic states on a polyamide-66 textile substrate

Sardo Infirri, Rosalinda January 2016 (has links)
Biomimicry means literally ‘imitation of life’ and is providing sustainable solutions for challenges that are occurring in the human lives. To date, the biomimic research reports that wettability in nature, e.g. self-cleaning effect on a lotus leaf and a striking water strider’s leg, is related to the cooperation between the chemical composition and the topography of the surface. Moreover, this study is developing a textile substrate that goes one step further than biomimic, called ‘Biomimicking beyond nature’. The focus of this study is establishing a 100% polyamide-66 textile substrate that is switchable and reversible between hydrophobic and hydrophilic states under stimulation of UV. In this study the behaviour of a polyamide-66 textile substrate, coated with three individual photoresponsive materials (azobenzene, titanium dioxide and zinc oxide), was investigated, under stimulation of 24 hours UV and one-week of storage period in dark conditions. Silicone was added to enhance the hydrophobicity of a titanium dioxide coated substrate. A switchability effect was detected, but no reversibility effect could be observed. The only organic photoresponsive material, azobenzene, obtained no significant results to conclude that an alternation between hydrophobic and hydrophilic was even present after 24 hours of UV radiation. However, azobenzene obtained more promising results on a 100% polyester textile substrate. Even though, the H0 cannot be rejected for all three individual photoresponsive materials, the zinc oxide coated polyamide-66 substrate, did exhibit the strongest results in switchability and reversibility. Based on the characterization measurements, a switchability effect from a hydrophobic surface (ca. 120°) to a hydrophilic surface (0°) can be observed after 24 hours of UV radiation. Moreover, a reversibility effect was only reported on a zinc oxide coated polyamide-66 substrate. The substrate partially reversed back to its original state with ca. 50%. Fabricating intelligent substrates could enhance many challenges confiscating today’s life. For instance, the development of smarts membranes or microfluidic switches, that alternate their wettability upon light radiation, could improve the exhausting manual labour in watering the harvest good in the agricultural industry. Therefore, it is of great importance that further research will be conducted upon the photoresponsive material, zinc oxide, in order to achieve more stable results. This study can be added to the relatively small area of knowledge around switchability phenomenon on textile substrates and can even been reported as one of the first attempts on developing a textile substrate with switchable and reversible characteristics, by use of a facile and possibly industrialized method.
3

Stimuli-induced structural switchability in the pillared-layer metal-organic framework DUT-8

Abylgazina, Leila 03 May 2023 (has links)
Metal-Organic Frameworks (MOFs) are highly porous materials built from inorganic nodes joined by organic linkers forming extended crystalline networks. One of the distinguishing features of metal-organic frameworks is the ability to adaptively change their crystal structure in response to external stimuli with significant porosity switching. Such structural switchability of MOFs offers new opportunities in gas separation, selective recognition, sensing, and energy storage. However, there are still open questions in understanding factors affecting switchability. The electronic structure of the metal in the building blocks, host-guest interactions, but also particle size, morphology, surface, desolvation conditions are involved into the responsiveness of the system. One of the representative of switchable metal-organic frameworks is pillared-layer DUT-8 (M2(2,6-ndc)2(dabco), M = Ni, Co, Cu, Zn, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane). Depending on the metal node and particle size, it is possible to synthesize either switchable or rigid materials differing in physisorption isotherm profiles. In order to understand switching behaviour of DUT-8, the important parameters influencing structural switchability are addressed in my work. For this purpose, the impact of crystal size and morphology, as well as crystal surface on adsorption-induced structural transformations of DUT-8(Ni) were investigated. DUT-8(Ni) shows reversible structural transition between open (op) and closed pore phase (cp) upon adsorption/removal of guest molecules. To understand which particular crystal surfaces dominate the phenomena observed, crystals similar in size and differing in morphology were involved in a systematic study. The analysis of the data shows that the width of the rods (corresponding to the crystallographic directions along the layer) represents a critical parameter governing the dynamic properties upon adsorption of nitrogen at 77 K. This observation is related to the anisotropy of the channel-like pore system and the nucleation mechanism of the solid-solid phase transition triggered by gas adsorption. To investigate the influence of external surface on adsorption-induced switchability, DUT-8(Ni) samples were exposed to different treatment techniques. By means of analytical methods, it was revealed that the surface of samples was modified leading to a significant increase of the gate-opening pressure, reflecting the increase of activation barrier for phase switching form cp to op upon adsorption of nitrogen at 77 K. Furthermore, the properties of DUT-8(Zn) were studied precisely, focusing on the variation of particle size and morphology, host-guest interactions, desolvation conditions, selectivity and thermoresponsivity. Depending on the synthesis conditions, DUT-8(Zn) can be synthesised in macro-sized regime (150 µm) and micron-sized regime (0.5 µm). The solvent removal process (pore desolvation stress contracting the framework) significantly controls the cp/op ratio after desolvation and, subsequently, the adsorption induced switchability characteristics of the system. Among the applied desolvation techniques, the solvent exchange with subsequent heating causes phase transition from open (op) to closed pore phase (cp). After desolvation, the dense cp phase of DUT-8(Zn) shows no adsorption-induced reopening and therefore is non-porous for N2 at 77 K and CO2 at 195 K. However, polar molecules with a higher adsorption enthalpy, such as chloromethane at 249 K and dichloromethane (DCM) at 298 K can reopen the macro-sized crystals upon adsorption, while micron-sized crystals retain the cp phase. For macro-sized particles (160 µm), the outer surface energy is negligible and only the type of metal (Zn, Co, Ni) controls the DCM-induced gate opening pressure. The node hinge stiffness increases from Zn to Ni as confirmed by DFT calculations, X-ray crystal structural analysis, and low frequency Raman spectroscopy. This softer Zn-based node hinges and overall increased stabilization of cp vs. op phase shift the critical particle size at which switchability starts to become suppressed to even lower values. Hence, the three factors affecting switchability (energetics of the empty host, (Eop–Ecp) (i), particle size (ii), and desolvation stress (iii)) appear to be of the same order of magnitude and should be considered collectively, not individually. Crystal downsizing (0.5 µm) facilitates the responsivity of DUT-8(Zn) towards different guest molecules, not opening for macro-sized crystals. Among investigated adsorptives, the alcohols are in the center of attention due to ability to induce so called shape-memory effect in micron-sized crystals. The adsorption of alcohols stimulates the change of initial shape of pores (cp) into a temporary shape (op) which is maintained even after desorption. To brighten the crystal size range and to study the dependence of gate opening pressure from crystal size and morphology, differently shaped crystals in micron-sized regime were produced by face-selective coordination modulation. Morphology modification allowed to determine the critical parameter controlling switchable transformations in DUT-8(Zn). Thus, the crystal size engineering and morphology modification provide an opportunity not only to control the structural dynamics of MOFs, but also to tailor responsivity towards guest molecules, influencing the selective adsorption behaviour.
4

Electrowetting Switchable Retroreflectors

Kilaru, Murali Krishna 29 November 2010 (has links)
No description available.
5

Synthesis and switchability study of amidine-containing vinyl monomers and their polymers

Li, Meng 04 1900 (has links)
<p>In this thesis work, two new CO<sub>2</sub>-responsive monomers have been synthesized. These amidine-containing monomers were prepared in a simple and effective one-step reaction, giving a very high yield (98.5 %) of product. Furthermore, there was no complicated further purification required to obtain the highly pure product. The CO<sub>2</sub> switchability, conductivity and partitioning of the monomers were measured. It was confirmed that the monomers could be protonated CO<sub>2</sub> in the present of trace amount of water and reversibly switched back and forth to their natural forms by N<sub>2</sub> at room temperature.</p> <p>The polymers having different molecular weights were prepared from one monomer via conventional free radical polymerization method. The polymers also showed the reversible switchability property with CO<sub>2</sub> and N<sub>2</sub> stimuli. This was confirmed by the results of conductivity and partitioning tests. Temperature showed a major influence on the conductivity of the monomer and polymers. The effect of molecular weight on the polymer switchability of was further investigated through conductivity tests and potentiometric titration. The conductivity decreased with the increased molecular weight. The apparent equilibrium constant (pK<sub>a</sub>)<sub> </sub>decreased with the degree of protonation (δ) suggesting that the basicity of the polymers is strongly depended on the value of δ.</p> / Master of Applied Science (MASc)
6

Synthesis and study of redox-active molecular nanomagnets / Synthèse et étude de nanoaimants moléculaires redox-actifs

Ma, Xiaozhou 11 September 2019 (has links)
Ce travail de thèse portait sur la synthèse et l'étude de complexes magnétiques redox-actifs comme prototypes pour la conception d'aimants moléculaires à haute température. L'activité redox est assurée par le ligand pontant, qui peut moduler et parfois améliorer significativement les propriétés magnétiques. Après un chapitre d'introduction présentant les derniers développements dans le domaine des matériaux magnétiques moléculaires, un accent particulier est mis sur l'importance d'avoir un fort couplage d'échange magnétique J entre les porteurs de spin. Une étude bibliographique présentant deux approches émergentes pour augmenter J dans les composés polynucléaires est également présentée et discutée. Le chapitre 2 présente les synthèses et caractérisations de complexes dinucléaires [M2(tphz)(tpy)2](PF6)n (M = Co(II) ou Ni(II); n = 4, 3, 2, tphz = tétrapyridophénazine, tpy = terpyridine) construits à partir de ligands pontant (tphz) et bloquant (tpy) fortement coordinants et redox-actifs. Les études approfondies de ces composés montrent que le ligand pontant redox-actif peut être utilisé comme un outil de choix pour promouvoir une délocalisation des spins, de forts couplages magnétiques, ainsi que de la commutabilité. L’analyse des résultats obtenus permet également de mieux comprendre les paramètres clés pour l’élaboration de systèmes fortement couplés magnétiquement. Dans le prolongement de ce travail visant à sélectionner les meilleurs composants pour la conception rationnelle d'aimants moléculaires à haute température, le chapitre 3 décrit une nouvelle série de complexes mononucléaires [Cr(III)(tphz)(tpy)](CF3SO3)n (n = 3, 2, 1). Les complexes mono- et doublement réduits présentent des interactions magnétiques remarquablement fortes entre les ions métalliques et les ligands radicalaires, et pourraient servir d'unités magnétiques intéressantes pour la conception d'aimants de plus hautes nucléarités. / The thesis work aims at the synthesis and study of redox-active magnetic molecules as prototypes towards the design of molecule-based magnets with high operating temperature, a prerequisite for technological applications. The redox activity is provided by the bridging ligand, which could tune and sometimes enhance significantly the magnetic properties of the resulting molecular architectures. After an introduction chapter presenting the latest developments in the field of molecule-based magnetic materials, special emphasis is given on the importance of having large magnetic exchange coupling J between the spin carriers to reach high operating temperature. This is supported by a bibliographic study concerning two emerging approach to enhance J values in polynuclear compounds. Chapter 2 presents the syntheses and characterizations of dinuclear M(II) complexes [M2(tphz)(tpy)2](PF6)n (M = Co or Ni; n = 4, 3, 2, tphz = tetrapyridophenazine) built by using strongly complexing, redox-active bridging ligand (tphz), and terpyridine (tpy) as capping ligands. The extensive studies on these compounds show that the redox-active bridging ligand can be used as a tool to promote spin delocalization, high spin complexes and magnetic multi-switchability. Importantly the work reveals the key parameters towards building strongly magnetically coupled systems. As a continuation research of finding the best magnetic components for the rational design of high temperature molecule-based magnets, Chapter 3 describes a new series of [Cr(III)(tphz)(tpy)](CF3SO3)n (n = 3, 2, 1) mononuclear complexes. Both the mono and doubly-reduced complexes show remarkable magnetic interactions between metal center and radical ligands, which could further act as interesting magnetic units for the design of higher nuclearities magnets.
7

Design of Smart Polymeric Materials with Responsive / Adaptive Adhesion Properties

Biehlig, Ekaterina 11 July 2013 (has links) (PDF)
Adhesion between different objects is happening everywhere. Without it, simple procedures like walking or holding something in a hand or attaching a postage stamp would be impossible. The life itself depends on adhesion on all levels, starting from the interactions between the living cells. Adhesion between two substrates is a complex phenomenon, which at present is still not well understood. There are several factors determining the strength of adhesion: (i) molecular interactions at interface, (ii) mechanical properties of adhesive, and (iii) area of contact between adhesive and probing surface. Two surfaces are tacky when they possess the right balance between these factors. Controlling the adhesion of materials is important in many fields ranging from industrial purposes to biomedical applications and everyday usage. There is a demand for “smart” materials with integrated functionalities that make them responsive, switchable, biocompatible, anti-bacterial, more energy efficient, or autonomous. In particular, materials for such cutting-edge applications like cell culture, drug delivery, tissue engineering, biosensors, anti/biofouling, microfluidics, climbing robots, sport equipment and many others require adjustable/tuneable adhesive properties. Many efforts were directed towards fabrication of materials with either weak or strong adhesion depending on the field of application. However, design of “smart” surfaces with reversibly switchable/controllable adhesion is still a highly challenging task. Therefore, the thesis aims on design of smart polymeric materials with responsive / adaptive adhesion properties. For this, fabrication and investigation of two types of switchable polymer layers based on stimuli-responsive polymer brushes will be performed. The first group is dealing with thermoresponsive polymer brushes: poly-(N-isopropylacrylamide) and two types of biocompatible polyethylene glycol-based systems. These polymer layers undergo phase transition below and above LCST between hydrophilic and hydrophobic states. The second part of the work is related to solvent-responsive comb-like and block copolymer brushes consisted of hydrophilic PEG and hydrophobic PDMS biocompatible and biodegradable polymers.
8

Design of Smart Polymeric Materials with Responsive / Adaptive Adhesion Properties

Biehlig, Ekaterina 02 July 2013 (has links)
Adhesion between different objects is happening everywhere. Without it, simple procedures like walking or holding something in a hand or attaching a postage stamp would be impossible. The life itself depends on adhesion on all levels, starting from the interactions between the living cells. Adhesion between two substrates is a complex phenomenon, which at present is still not well understood. There are several factors determining the strength of adhesion: (i) molecular interactions at interface, (ii) mechanical properties of adhesive, and (iii) area of contact between adhesive and probing surface. Two surfaces are tacky when they possess the right balance between these factors. Controlling the adhesion of materials is important in many fields ranging from industrial purposes to biomedical applications and everyday usage. There is a demand for “smart” materials with integrated functionalities that make them responsive, switchable, biocompatible, anti-bacterial, more energy efficient, or autonomous. In particular, materials for such cutting-edge applications like cell culture, drug delivery, tissue engineering, biosensors, anti/biofouling, microfluidics, climbing robots, sport equipment and many others require adjustable/tuneable adhesive properties. Many efforts were directed towards fabrication of materials with either weak or strong adhesion depending on the field of application. However, design of “smart” surfaces with reversibly switchable/controllable adhesion is still a highly challenging task. Therefore, the thesis aims on design of smart polymeric materials with responsive / adaptive adhesion properties. For this, fabrication and investigation of two types of switchable polymer layers based on stimuli-responsive polymer brushes will be performed. The first group is dealing with thermoresponsive polymer brushes: poly-(N-isopropylacrylamide) and two types of biocompatible polyethylene glycol-based systems. These polymer layers undergo phase transition below and above LCST between hydrophilic and hydrophobic states. The second part of the work is related to solvent-responsive comb-like and block copolymer brushes consisted of hydrophilic PEG and hydrophobic PDMS biocompatible and biodegradable polymers.
9

Polarity‐Switchable Symmetric Graphite Batteries with High Energy and High Power Densities

Wang, Gang, Wang, Faxing, Zhang, Panpan, Zhang, Jian, Zhang, Tao, Müllen, Klaus, Feng, Xinliang 17 July 2019 (has links)
Multifunctional batteries with enhanced safety performance have received considerable attention for their applications at extreme conditions. However, few batteries can endure a mix‐up of battery polarity during charging, a common wrong operation of rechargeable batteries. Herein, a polarity‐switchable battery based on the switchable intercalation feature of graphite is demonstrated. The unique redox‐amphoteric intercalation behavior of graphite allows a reversible switching of graphite between anode and cathode, thus enabling polarity‐switchable symmetric graphite batteries. The large potential gap between anion and cation intercalation delivers a high midpoint device voltage (≈average voltage) of ≈4.5 V. Further, both the graphite anode and cathode are kinetically activated during the polarity switching. Consequently, polarity‐switchable symmetric graphite batteries exhibit a remarkable cycling stability (96% capacity retention after 500 cycles), a high power density of 8.66 kW kg−1, and a high energy density of 227 Wh kg−1 (calculated based on the total weight of active materials in both anode and cathode), which are superior to other symmetric batteries and recently reported dual‐graphite or dual‐carbon batteries. This work will inspire the development of new multifunctional energy‐storage devices based on novel materials and electrolyte systems.

Page generated in 0.0478 seconds