• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 78
  • 42
  • 35
  • 17
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 565
  • 93
  • 71
  • 64
  • 57
  • 51
  • 44
  • 43
  • 37
  • 33
  • 32
  • 31
  • 30
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Shear Resistance of High Strength Concrete I-beams with Large Shear Reinforcement Ratios

Xu, Roger Yuan 21 February 2012 (has links)
Experiments were performed to examine the shear resistance of heavily reinforced I-beams. Six I-beams with identical cross sections were constructed using high strength self-consolidating concrete, and were tested under monotonic anti-symmetric loading. All specimens had almost the same amount of longitudinal reinforcement, which provided sufficient flexural capacities. There were two variables: shear span and shear reinforcement ratio. Test results showed that ACI code was too conservative in predicting the shear strengths of heavily shear reinforced I-beams, and the shear strength limit for deep beams should be increased to account for the benefit of high strength concrete. However, doubling the amount of stirrups did not improve the ultimate shear resistance much. The three beams that contained around 2.45% stirrups showed over-reinforced shear failures. Longitudinal flange cracking occurred to every specimen due to lack of cross tie reinforcement in the flanges, and it was believed to have reduced the ultimate shear strength.
222

Shear Resistance of High Strength Concrete I-beams with Large Shear Reinforcement Ratios

Xu, Roger Yuan 21 February 2012 (has links)
Experiments were performed to examine the shear resistance of heavily reinforced I-beams. Six I-beams with identical cross sections were constructed using high strength self-consolidating concrete, and were tested under monotonic anti-symmetric loading. All specimens had almost the same amount of longitudinal reinforcement, which provided sufficient flexural capacities. There were two variables: shear span and shear reinforcement ratio. Test results showed that ACI code was too conservative in predicting the shear strengths of heavily shear reinforced I-beams, and the shear strength limit for deep beams should be increased to account for the benefit of high strength concrete. However, doubling the amount of stirrups did not improve the ultimate shear resistance much. The three beams that contained around 2.45% stirrups showed over-reinforced shear failures. Longitudinal flange cracking occurred to every specimen due to lack of cross tie reinforcement in the flanges, and it was believed to have reduced the ultimate shear strength.
223

Enumeration of Factorizations in the Symmetric Group: From Centrality to Non-centrality

Sloss, Craig January 2011 (has links)
The character theory of the symmetric group is a powerful method of studying enu- merative questions about factorizations of permutations, which arise in areas including topology, geometry, and mathematical physics. This method relies on having an encoding of the enumerative problem in the centre Z(n) of the algebra C[S_n] spanned by the symmetric group S_n. This thesis develops methods to deal with permutation factorization problems which cannot be encoded in Z(n). The (p,q,n)-dipole problem, which arises in the study of connections between string theory and Yang-Mills theory, is the chief problem motivating this research. This thesis introduces a refinement of the (p,q,n)-dipole problem, namely, the (a,b,c,d)- dipole problem. A Join-Cut analysis of the (a,b,c,d)-dipole problem leads to two partial differential equations which determine the generating series for the problem. The first equation determines the series for (a,b,0,0)-dipoles, which is the initial condition for the second equation, which gives the series for (a,b,c,d)-dipoles. An analysis of these equa- tions leads to a process, recursive in genus, for solving the (a,b,c,d)-dipole problem for a surface of genus g. These solutions are expressed in terms of a natural family of functions which are well-understood as sums indexed by compositions of a binary string. The combinatorial analysis of the (a,b,0,0)-dipole problem reveals an unexpected fact about a special case of the (p,q,n)-dipole problem. When q=n−1, the problem may be encoded in the centralizer Z_1(n) of C[S_n] with respect to the subgroup S_{n−1}. The algebra Z_1(n) has many combinatorially important similarities to Z(n) which may be used to find an explicit expression for the genus polynomials for the (p,n−1,n)-dipole problem for all values of p and n, giving a solution to this case for all orientable surfaces. Moreover, the algebraic techniques developed to solve this problem provide an alge- braic approach to solving a class of non-central problems which includes problems such as the non-transitive star factorization problem and the problem of enumerating Z_1- decompositions of a full cycle, and raise intriguing questions about the combinatorial significance of centralizers with respect to subgroups other than S_{n−1}.
224

Generalizing sampling theory for time-varying Nyquist rates using self-adjoint extensions of symmetric operators with deficiency indices (1,1) in Hilbert spaces

Hao, Yufang January 2011 (has links)
Sampling theory studies the equivalence between continuous and discrete representations of information. This equivalence is ubiquitously used in communication engineering and signal processing. For example, it allows engineers to store continuous signals as discrete data on digital media. The classical sampling theorem, also known as the theorem of Whittaker-Shannon-Kotel'nikov, enables one to perfectly and stably reconstruct continuous signals with a constant bandwidth from their discrete samples at a constant Nyquist rate. The Nyquist rate depends on the bandwidth of the signals, namely, the frequency upper bound. Intuitively, a signal's `information density' and `effective bandwidth' should vary in time. Adjusting the sampling rate accordingly should improve the sampling efficiency and information storage. While this old idea has been pursued in numerous publications, fundamental problems have remained: How can a reliable concept of time-varying bandwidth been defined? How can samples taken at a time-varying Nyquist rate lead to perfect and stable reconstruction of the continuous signals? This thesis develops a new non-Fourier generalized sampling theory which takes samples only as often as necessary at a time-varying Nyquist rate and maintains the ability to perfectly reconstruct the signals. The resulting Nyquist rate is the critical sampling rate below which there is insufficient information to reconstruct the signal and above which there is redundancy in the stored samples. It is also optimal for the stability of reconstruction. To this end, following work by A. Kempf, the sampling points at a Nyquist rate are identified as the eigenvalues of self-adjoint extensions of a simple symmetric operator with deficiency indices (1,1). The thesis then develops and in a sense completes this theory. In particular, the thesis introduces and studies filtering, and yields key results on the stability and optimality of this new method. While these new results should greatly help in making time-variable sampling methods applicable in practice, the thesis also presents a range of new purely mathematical results. For example, the thesis presents new results that show how to explicitly calculate the eigenvalues of the complete set of self-adjoint extensions of such a symmetric operator in the Hilbert space. This result is of interest in the field of functional analysis where it advances von Neumann's theory of self-adjoint extensions.
225

Evolution equations and vector-valued Lp spaces: Strichartz estimates and symmetric diffusion semigroups.

Taggart, Robert James, Mathematics & Statistics, Faculty of Science, UNSW January 2008 (has links)
The results of this thesis are motivated by the investigation of abstract Cauchy problems. Our primary contribution is encapsulated in two new theorems. The first main theorem is a generalisation of a result of E. M. Stein. In particular, we show that every symmetric diffusion semigroup acting on a complex-valued Lebesgue space has a tensor product extension to a UMD-valued Lebesgue space that can be continued analytically to sectors of the complex plane. Moreover, this analytic continuation exhibits pointwise convergence almost everywhere. Both conclusions hold provided that the UMD space satisfies a geometric condition that is weak enough to include many classical spaces. The theorem is proved by showing that every symmetric diffusion semigroup is dominated by a positive symmetric diffusion semigoup. This allows us to obtain (a) the existence of the semigroup's tensor extension, (b) a vector-valued version of the Hopf--Dunford--Schwartz ergodic theorem and (c) an holomorphic functional calculus for the extension's generator. The ergodic theorem is used to prove a vector-valued version of a maximal theorem by Stein, which, when combined with the functional calculus, proves the pointwise convergence theorem. The second part of the thesis proves the existence of abstract Strichartz estimates for any evolution family of operators that satisfies an abstract energy and dispersive estimate. Some of these Strichartz estimates were already announced, without proof, by M. Keel and T. Tao. Those estimates which are not included in their result are new, and are an abstract extension of inhomogeneous estimates recently obtained by D. Foschi. When applied to physical problems, our abstract estimates give new inhomogeneous Strichartz estimates for the wave equation, extend the range of inhomogeneous estimates obtained by M. Nakamura and T. Ozawa for a class of Klein--Gordon equations, and recover the inhomogeneous estimates for the Schr??dinger equation obtained independently by Foschi and M. Vilela. These abstract estimates are applicable to a range of other problems, such as the Schr??dinger equation with a certain class of potentials.
226

The Jantzen-Shapovalov form and Cartan invariants of symmetric groups and Hecke algebras /

Hill, David Edward, January 2007 (has links)
Thesis (Ph. D.)--University of Oregon, 2007. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 107-108). Also available for download via the World Wide Web; free to University of Oregon users.
227

The equivocation of codes

Schofield, Mark January 2018 (has links)
Equivocation was introduced by Shannon in the late 1940’s in seminal papers that kick-started the whole field of information theory. Much ground has been covered on equivocation’s counterpart, channel capacity and in particular, its bounds. However, less work has been carried out on the evaluation of the equivocation of a code transmitted across a channel. The aim of the work covered in this thesis was to use a probabilistic approach to investigate and compare the equivocation of various codes across a range of channels. The probability and entropy of each output, given each input, can be used to calculate the equivocation. This gives a measure of the ambiguity and secrecy of a code when transmitted across a channel. The calculations increase exponentially in magnitude as both the message length and code length increase. In addition, the impact of factors such as erasures and deletions also serve to significantly complicate the process. In order to improve the calculation times offered by a conventional, linearly-programmed approach, an alternative strategy involving parallel processing with a CUDA-enabled (Compute Unified Device Architecture) graphical processor was employed. This enabled results to be obtained for codes of greater length than was possible with linear programming. However, the practical implementation of a CUDA driven, parallel processed solution gave rise to significant issues with both the software implementation and subsequent platform stability. By normalising equivocation results, it was possible to compare different codes under different conditions, making it possible to identify and select codes that gave a marked difference in the equivocation encountered by a legitimate receiver and an eavesdropper. The introduction of code expansion provided a novel method for enhancing equivocation differences still further. The work on parallel processing to calculate equivocation and the use of code expansion was published in the following conference: Schofield, M., Ahmed, M. & Tomlinson, M. (2015), Using parallel processing to calculate and improve equivocation, in ’IEEE Conference Publications - IEEE 16th International Conference on Communication Technology’. In addition to the novel use of a CUDA-enabled graphics process to calculated equivocation, equivocation calculations were also performed for expanded versions of the codes. Code expansion was shown to yield a dramatic increase in the achievable equivocation levels. Once methods had been developed with the Binary Symmetric Channel (BSC), they were extended to include work with intentional erasures on the BSC, intentional deletions on the BSC and work on the Binary Erasure Channel (BEC). The work on equivocation on the BSC with intentional erasures was published in: Schofield, M. et al, (2016), Intentional erasures and equivocation on the binary symmetric channel, in ’IEEE Conference Publications - International Computer Symposium’, IEEE, pp 233-235. The work on the BEC produced a novel outcome due to the erasure correction process employed. As the probability of an erasure occurring increases, the set of likely decoded outcomes diminishes. This directly impacts the output entropy of the system by decreasing it, thereby also affecting the equivocation value of the system. This aspect was something that had not been encountered previously. The work also extended to the consideration of intentional deletions on the BSC and the Binary Deletion Channel (BDC) itself. Although the methods used struggled to cope with the additional complexity brought by deletions, the use of Varshamov-Tenengolts codes on the BSC with intentional deletions showed that family of codes to be well suited to the channel arrangement as well as having the capability to be extended to enable the correction of multiple deletions.
228

Teoremas de comparação e uma aplicação a estimativa do primeiro autovalor

Nunes, Adilson da Silva January 2014 (has links)
Este trabalho trata de estimativas inferiores para o primeiro autovalor do problema de Dirichlet para o Laplaciano para domínios relativamente compactos contidos em variedades riemannianas. Essas estimativas são obtidas com hipóteses sobre a curvatura seccional ou a curvatura de Ricci radial e a curvatura do bordo do domínio. / This paper deals of lower estimates for the first eigenvalue of the Dirichlet problem for the Laplacian for relatively compact domains contained in Riemannian manifolds. These estimates are obtained with assumptions on the sectional or Ricci radial curvature and the curvature of the boundary of the domain.
229

Two theorems on Galois representations and Shimura varieties

Karnataki, Aditya Chandrashekhar 12 August 2016 (has links)
One of the central themes of modern Number Theory is to study properties of Galois and automorphic representations and connections between them. In our dissertation, we describe two different projects that study properties of these objects. In our first project, which is analytic in nature, we consider Artin representations of Q of dimension 3 that are self-dual. We show that these occur with density 0 when counted using the conductor. This provides evidence that self-dual representations should be rare in all dimensions. Our second project, which is more algebraic in nature, is related to automorphic representations. We show the existence of canonical models for certain unitary Shimura varieties. This should help us in computing certain cohomology groups of these varieties, in which regular algebraic automorphic representations having useful properties should be found.
230

Representations of Hecke algebras and the Alexander polynomial

Black, Samson, 1979- 06 1900 (has links)
viii, 50 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / We study a certain quotient of the Iwahori-Hecke algebra of the symmetric group Sd , called the super Temperley-Lieb algebra STLd. The Alexander polynomial of a braid can be computed via a certain specialization of the Markov trace which descends to STLd. Combining this point of view with Ocneanu's formula for the Markov trace and Young's seminormal form, we deduce a new state-sum formula for the Alexander polynomial. We also give a direct combinatorial proof of this result. / Committee in charge: Arkady Vaintrob, Co-Chairperson, Mathematics Jonathan Brundan, Co-Chairperson, Mathematics; Victor Ostrik, Member, Mathematics; Dev Sinha, Member, Mathematics; Paul van Donkelaar, Outside Member, Human Physiology

Page generated in 0.0404 seconds