31 |
Multi-Scale Topology Optimization of Lattice Structures Using Machine Learning / Flerskalig topologioptimering av gitterstrukturer med användning av maskininlärningIbstedt, Julia January 2023 (has links)
This thesis explores using multi-scale topology optimization (TO) by utilizing inverse homogenization to automate the adjustment of each unit-cell's geometry and placement in a lattice structure within a pressure vessel (the design domain) to achieve desired structural properties. The aim is to find the optimal material distribution within the design domain as well as desired material properties at each discretized element and use machine learning (ML) to map microstructures with corresponding prescribed effective properties. Effective properties are obtained through homogenization, where microscopic properties are upscaled to macroscopic ones. The symmetry group of a unit-cell's elasticity tensor can be utilized for stiffness directional tunability, i.e., to tune the cell's performance in different load directions. A few geometrical variations of a chosen unit-cell were homogenized to build an effective anisotropic elastic material model by obtaining their effective elasticity. The symmetry group and the stiffness directionality of the cells’ effective elasticity tensors were identified. This was done using both the pattern of the matrix representation of the effective elasticity tensor and the roots of the monoclinic distance function. A cell library of symmetry-preserving variations with a corresponding material property space was created, displaying the achievable properties within the library. Two ML models were implemented to map material properties to appropriate cells. A TO algorithm was also implemented to produce an optimal material distribution within a design domain of a pressure vessel in 2D to maximize stiffness. However, the TO algorithm to obtain desired material properties for each element in the domain was not realized within the time frame of this thesis. The cells were successfully homogenized. The effective elasticity tensor of the chosen cell was found to belong to the cubic symmetry group in its natural coordinate system. The results suggest that the symmetry group of an elasticity tensor retrieved through numerical experiments can be identified using the monoclinic distance function. If near-zero minima are present, they can be utilized to find the natural coordinate system. The cubic symmetry allowed the cell library's material property space to be spanned by only three elastic constants, derived from the elasticity matrix. The orthotropic symmetry group can enable a greater directional tunability and design flexibility than the cubic one. However, materials exhibiting cubic symmetry can be described by fewer material properties, limiting the property space, which could make the multi-scale TO less complex. The ML models successfully predicted the cell parameters for given elastic constants with satisfactory results. The TO algorithm was successfully implemented. Two different boundary condition cases were used – fixing the domain’s corner nodes and fixing the middle element’s nodes. The latter was found to produce more sensible results. The formation of a cylindrical outer shape could be distinguished in the produced material design, which was deemed reasonable since cylindrical pressure vessels are consistent with engineering practice due to their inherent ability to evenly distribute load. The TO algorithm must be extended to include the elastic constants as design variables to enable the multi-scale TO.
|
32 |
Optimal tests for symmetryCassart, Delphine 01 June 2007 (has links)
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétrique localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour trois modèles d'asymétrie. <p>La construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application. <p>Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.<p><p>Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).<p>Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.<p>Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.<p><p>Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables. <p>Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance. <p>Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités. <p><p>A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.<p>Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations. / Doctorat en sciences, Orientation statistique / info:eu-repo/semantics/nonPublished
|
Page generated in 0.054 seconds