• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 22
  • 12
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 171
  • 60
  • 47
  • 42
  • 31
  • 27
  • 23
  • 23
  • 21
  • 19
  • 18
  • 18
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Thermodynamic, Sulfide, Redox Potential, and pH Effects on Syngas Fermentation

Hu, Peng 16 February 2011 (has links) (PDF)
Recently, work in ethanol production is exploring the fermentation of syngas (primarily CO, CO2, and H2) following gasification of cellulosic biomass. The syngas fermentation by clostridium microbes utilizes the Wood-Ljungdahl metabolic pathway. Along this pathway, the intermediate Acetyl-CoA typically diverges to produce ethanol, acetic acid, and/or cell mass. To develop strategies for process optimization, a thermodynamic analysis was conducted that provided a detailed understanding of the favorability of the reactions along the metabolic pathway. Thermodynamic analysis provided identification of potentially limiting steps. Once these limiting reactions were identified, further thermodynamic analysis provided additional insights into the ways in which reaction conditions could be adjusted to improve product yield as well as minimize the effect of such bottlenecks. In this way, strategies to enhance product formation were effectively formed. A thermodynamic analysis regarding electron utilization suggested that it would be unlikely that H2 is utilized in favor of CO for electron production when both species are present. Therefore, CO conversion efficiency to products will be sacrificed during syngas fermentation since some of the CO will make electrons at the expense of product and cell mass formation. Furthermore, the analysis showed the thermodynamic difference of ethanol production, acetate production, and acetate to ethanol conversion, at varying reaction conditions, such as at different pH and redox potential levels. These differences were then incorporated into a strategy to optimize production of desired product, improve bioreactor design, and decrease the amount of by-product formed. Based on the thermodynamics analysis, experiments with varying experimental conditions were performed. The results showed that sulfide concentration in the media changed. In order to assess the effects of experimental conditions on syngas fermentation and decrease the experimental variability, experiments with controlled sulfide, redox potential, and pH were designed and the results indicated that these factors play key roles on cell growth, product formation and product distribution. Furthermore, experimental conditions had different effects on fermentation during different phases. For example, cell growth is much better at pH=5.8 than pH=4.5. However, the ethanol production rate at pH=4.5 is better than pH=5.8. A strategy involving controlling the pH and redox potential at different phases was effectively applied to improve ethanol production. This work provided significant insights on how varying experimental conditions can affect the syngas fermentation process.
92

An Improved Biosolid Gasifier Model

McLean, Hannah 01 January 2015 (has links)
As populations increase and cities become denser, the production of waste, both sewage sludge and food biomass, increases exponentially while disposal options for these wastes are limited. Landfills have minimal space for biosolids; countries are now banning ocean disposal methods for fear of the negative environmental impacts. Agricultural application of biosolids cannot keep up with the production rates because of the accumulation of heavy metals in the soils. Gasification can convert biosolids into a renewable energy source that can reduce the amount of waste heading to the landfills and reduce our dependence on fossil fuels. A recently published chemical kinetic computer model for a fluidized-bed sewage sludge gasifier (Champion, Cooper, Mackie, & Cairney, 2014) was improved in this work based on limited experimental results obtained from a bubbling fluidized-bed sewage sludge gasifier at the MaxWest facility in Sanford, Florida and published information from the technical literature. The gasifier processed sewage sludge from the communities surrounding Sanford and was operated at various air equivalence ratios and biosolid feed rates. The temperature profile inside of the gasifier was recorded over the span of four months, and an average profile was used in the base case scenario. The improved model gave reasonable predictions of the axial bed temperature profile, syngas composition, heating value of the syngas, gas flow rate, and carbon conversion. The model was validated by comparing the simulation temperature profile data with the measured temperature profile data. An overall heat loss coefficient was calculated for the gasification unit to provide a more accurate energy balance. Once the model was equipped with a heat loss coefficient, the output syngas temperature closely matched the operational data from the MaxWest facility. The model was exercised at a constant equivalence ratio at varying temperatures, and again using a constant temperature with varying equivalence ratios. The resulting syngas compositions from these exercises were compared to various literature sources. It was decided that some of the reactions kinetics needed to be adjusted so that the change in syngas concentration versus change in bed temperature would more closely match the literature. The reaction kinetics for the Water-Gas Shift and Boudouard reactions were modified back to their original values previously obtained from the literature.
93

A Study Of Syngas Oxidation At High Pressures And Low Temperatures

Kalitan, Danielle Marie 01 January 2007 (has links)
Ignition and oxidation characteristics of CO/H2, H2/O2 and CO/H2/CH4/CO2/Ar fuel blends in air were studied using both experimental and computer simulation methods. Shock-tube experiments were conducted behind reflected shock waves at intermediate temperatures (825 < T < 1400 K) for a wide range of pressures (1 < P < 45 atm). Results of this study provide the first undiluted fuel-air ignition delay time experiments to cover such a wide range of syngas mixture compositions over the stated temperature range. Emission in the form of chemiluminescence from the hydroxyl radical (OH*) transition near 307 nm and the pressure behind the reflected shock wave were used to monitor reaction progress from which ignition delay times were determined. In addition to the experimental analysis, chemical kinetics calculations were completed to compare several chemical kinetics mechanisms to the new experimental results. Overall, the models were in good agreement with the shock-tube data, especially at higher temperatures and lower pressures, yet there were some differences between the models at higher pressures and the lowest temperatures, in some cases by as much as a factor of five. In order to discern additional information from the chemical kinetics mechanisms regarding their response to a wide range of experimental conditions, ignition delay time and reaction rate sensitivity analyses were completed at higher and lower temperatures and higher and lower pressures. These two sensitivity analyses allow for the identification of the key reactions responsible for ignition. The results of the sensitivity analysis indicate that the ignition-enhancing reaction H + O2 = O + OH and hydrogen oxidation kinetics in general were most important regardless of mixture composition, temperature or pressure. However, lower-temperature, higher-pressure ignition delay time results indicate additional influence from HO2- and CO- containing reactions, particularly the well-known H + O + M = HO2 + M reaction and also the CO + O + M = CO2 + M and CO + HO2 = CO2 + OH reactions. Differences in the rates of the CO-related reactions are shown to be the cause of some of the discrepancies amongst the various models at elevated pressures. However, the deviation between the models and the experimental data at the lowest temperatures could not be entirely explained by discrepancies in the current rates of the reactions contained within the mechanisms. Additional calculations were therefore performed to gain further understanding regarding the opposing ignition behavior for calculated and measured ignition delay time results. Impurities, friction induced ionization, static charge accumulation, boundary layer effects, wall reaction effects, and revised chemical kinetics were all considered to be possible mechanisms for the model and measured data disparity. For the case of wall-reaction effects, additional shock-tube experiments were conducted. For the remaining effects listed above, only detailed calculations were conducted. Results from this preliminary anomaly study are at this time inconclusive, but likely avenues for future study were identified. Additional kinetics calculations showed that the large difference between the experimental data and the chemical kinetics models predictions at low temperatures can be explained by at least one missing reaction relevant to low-temperature and high-pressure experimental conditions involving the formation of H2O2, although further study beyond the scope of this thesis is required to prove this hypothesis both theoretically and experimentally.
94

Combustion Characteristics of Moist H2 and H2/CO Mixtures and In-situ Temperature and Species Measurements Using Mid-IR Absorption Spectroscopy in a New RCM

Das, Apurba K. 22 May 2012 (has links)
No description available.
95

Conversion of Carbonaceous Fuel to Electricity, Hydrogen, and Chemicals via Chemical Looping Technology - Reaction Kinetics and Bench-Scale Demonstration

Luo, Siwei 04 September 2014 (has links)
No description available.
96

EFFECT OF MANGANESE AND ZEOLITE COMPOSITION ON ZEOLITE-SUPPORTED NICKEL CATALYSTS FOR DRY REFORMING OF METHANE

Najfach, Aaron Jacob 03 August 2017 (has links)
No description available.
97

Advanced Adsorbents for Warm Gas Capture of Mercury in Coal Gasification

Rao, Poornima S. January 2010 (has links)
No description available.
98

The Effects of Mercury on the Performance of Ni/YSZ Anode in a Planar Solid Oxide Fuel Cell

Perera, Chaminda Kithsiri 16 April 2010 (has links)
No description available.
99

A High Temperature Planar Solid Oxide Fuel Cell Operating on Phosphine Contaminated Coal Syngas

De Silva, Kandaudage Channa R. 25 July 2011 (has links)
No description available.
100

Design, Shakedown, Modification, and Preliminary Study of the Sygnas Chemical Looping Sub-Pilot Demonstration Unit

Tong, Andrew S. 02 November 2010 (has links)
No description available.

Page generated in 0.0335 seconds