• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 42
  • 13
  • 8
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 154
  • 88
  • 41
  • 36
  • 28
  • 28
  • 24
  • 24
  • 24
  • 21
  • 17
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

THE BIOCHEMICAL PROCESS OF LUBRICANT FILM FORMATION INSIDE HIP JOINT REPLACEMENT / THE BIOCHEMICAL PROCESS OF LUBRICANT FILM FORMATION INSIDE HIP JOINT REPLACEMENT

Rufaqua, Risha January 2021 (has links)
The dissertation thesis deals with the lubricant film formation chemistry on hip implant material surfaces with synovial fluid components. Biochemical and tribological properties of synovial fluid after joint replacement are focused, precisely on the chemical composition of the formed lubricating film and chemical structural changes of the associated constituents under mechanical loading. Nevertheless, the synovial fluid components‘ chemical structural changes after the joint replacement are rarely addressed and require further attention. Including metal and ceramics, various combination implant materials were applied within the lubricants of synovial fluid constituents separately and different model synovial fluids to reveal the biochemical reactions and frictional coefficients for understanding the possible lubrication mechanism. Raman Spectroscopic technique is manifested as the most appropriate method to explain the biochemical behaviour of synovial fluid and chemisorption on the surface of the implant material. The method is depicted presenting two different studies focusing on the chemical structure of the synovial fluid film on the implant surface and frictional coefficient measurement of the contact pair within the artificial hip joint. This latest methodological precedent also facilitates to evaluate the chemical structural change of the synovial fluid due to the tribological activity in the hip prosthesis. The thesis expounds original results concerning biotribology to increase the depth of knowledge on joint replacement procedure and to enhance the longevity of the orthopaedic implantations.
42

Studium vlivu složení synoviální kapaliny na tření kloubní chrupavky / The effect of synovial fluid composition on friction of joint cartilage

Furmann, Denis January 2019 (has links)
This thesis deals with the study of the effect of the constituents of the model synovial fluid on the frictional properties of articular cartilage. The influence of constituents, concentration, speed and load is observed. Experiments were performed on a commercial tribometer at configuration pin-on-plate. Several types of lubricants containing synovial fluid constituents have been selected for the experiments. Lubricants were prepared at two concentrations, the concentration of healthy individuals and at a concentration typical of for osteoarthritic patients. Speeds 5 and 10 mm/s and 5 and 10 N loads were used for all experiments. It is shown that when using only lubricant containing proteins, no difference in the coefficient of friction is observed and the effect of concentration is also not observed. The addition of hyaluronic acid has a synergistic effect with -globulin, however in the case of lubricants containing albumin, the effect is opposite. After the addition of phospholipids, no significant effect on friction is observed in -globulin containing lubricants. No significant effect of the composition and concentration of the lubricants is observed with the load change.
43

Evolution of the synovial joints in Osteichthyes : Cells displaying functional similarities to synoviocytes in zebrafish Danio rerio / Evolutionen av synovialleden i benfiskar : Celler visar funktionella likheter till synoviocyter i zebrafisk Danio rerio

Gillnäs, Sara January 2019 (has links)
Synovial joints enable frictionless movement between the adjacent bones. Lubricating fluid enclosed within the joint reduce the pressure to allow free movement. Previously synovial joints have been associated with a terrestrial life and have mainly been studied in tetrapods, such as mammals and chicken, under the assumption that the joint did not evolve before animals adapted to a life on land. However, a recent study described the production and function of lubricin in the jaw and pectoral fin joints in ray-finned fishes, such as zebrafish, suggesting previous assumption to be questionable. The current study aim to further investigate the jaw joints in the ray-finned zebrafish, by examininge the morphology and presence of specific cell types, called synoviocytes, associated with the synovial joint. The synoviocytes are divided into two groups: macrophage-like cells and fibroblast-like cells. Tissue sections were histologically investigated with nuclear staining and immunohistochemically with antibodies to chondroitin sulphate (CS-56) and uridine diphosphoglucose dehydrogenase (UDPGD, UGDH) to investigate the presence of fibroblast-like cells. Small and circular cells were observed in the joint line and surrounding cartilage nascent to the joint. These cells could not be identified as chondrocytes or part of the perichondrium, and their UDPGD activity witness on similarities to the fibroblast-like cells. UDPGD is associated to the synthesis of hyaluronan (HA) which plays a key role in joint cavitation, hence, suggesting functional similarities in the development of zebrafish jaw joint to synovial joints. Furthermore a double transgenic zebrafish, fli1:EGFP/mpeg1:mCherry, was used to examine the presence of macrophages within the joint area. Macrophages were observed on the surface of the jaw joint in close association with blood vessels but did not show signs of incorporation within the joint. These results present further similarities of joints in ray-finned fish to the synovial joint but also the need to further examine similarities in order to understand the development and evolution of the joints. The possibility to implement the zebrafish model would facilitate future studies on the healthy synovial joint as well the diseases related to it.
44

Synovial immune mechanisms in rheumatoid arthritis : prospects for immunotherapy

Ratcliffe, Liam Thomas 03 May 2017 (has links)
No description available.
45

SS18-SSX, the Oncogenic Fusion Protein in Synovial Sarcoma, Is a Cellular Context-Dependent Epigenetic Modifier / 滑膜肉腫特異的融合タンパクSS18-SSXは細胞背景依存性のエピゲノム修飾因子である

Tamaki, Sakura 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第19632号 / 医科博第70号 / 新制||医科||5(附属図書館) / 32668 / 京都大学大学院医学研究科医科学専攻 / (主査)教授 斎藤 通紀, 教授 小川 誠司, 教授 野田 亮 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
46

Tribocorrosion Behavior of Metallic Implants: A Comparative Study of CoCrMo and Ti6Al4V in Simulated Synovial Fluids

Cudjoe, Edward 27 August 2019 (has links)
No description available.
47

The kinetics and pathogenic implications of synovial fluid-induced Staphylococcus aureus aggregate formation in the development of periprosthetic joint infections

Staats, Amelia Margaret January 2022 (has links)
No description available.
48

Raman Spectroscopic Analysis of Crystals in Synovial Fluid

Li, Bolan 31 May 2016 (has links)
No description available.
49

Macrophage-mediated regulation of joint homeostasis

Menarim, Bruno C. 06 November 2019 (has links)
Osteoarthritis (OA) is the leading cause of musculoskeletal disability in people and horses, and is characterized by progressive joint degeneration. There is a critical need for a better understanding of disease processes leading to OA in order to develop more efficient therapies. A shared feature among different arthritic conditions is chronic synovitis. Macrophages are the main drivers of synovitis and can display pro-inflammatory (M1) or pro-resolving responses (M2). Macrophages promote joint health through phagocytic and secretory activities; however, when these functions are overwhelmed, macrophages upregulate inflammation, recruiting more cells to counteract damage. Once cell recruitment is efficiently accomplished, macrophages coordinate tissue repair and further resolution of inflammation. Bone marrow mononuclear cells (BMNC) are a source of macrophages used to treat inflammation and produce essential molecules for cartilage metabolism; however, little information exists regarding their use in joints. The studies presented in this dissertation focus on understanding the dual role of macrophages in driving and resolving synovitis and how to harness their therapeutic potential. In the first study, patterns of macrophage phenotypes (M1:M2) in healthy and osteoarthritic equine synovium were compared and correlated with gross pathology, histology, and synovial fluid cytokines. M1 and M2 markers were co-expressed in normal and osteoarthritic joints, varying in intensity of expression according to degree of inflammation. Concentrations of synovial fluid IL-10, a macrophage-produced cytokine that is vital for chondrocyte recovery from injury, was lower in OA joints. The combined findings of this study suggest homeostatic mechanisms from synovial macrophages in OA may be overwhelmed, preventing inflammation resolution. In the second study we investigated the response of BMNC to normal (SF) and inflamed synovial fluid (ISF). BMNC cultured in autologous SF or ISF developed into macrophage cultures that were more confluent in ISF (~100%) than SF (~25%), and exhibited phenotypes that were ultimately similar to cells native to normal joints. BMNC cultured in SF or ISF were neither M1 nor M2, but exhibited aspects of both phenotypes and a regulatory response, characterized by increasing counts of IL-10+ macrophages, decreasing concentrations of IL-1β, and progressively increasing concentrations of IL-10 and IGF-1, all more marked in ISF. These findings suggest that homeostatic mechanisms were preserved over time, and potentially favored by macrophage proliferation. Our data suggest that BMNC therapy could potentiate the macrophage- and IL-10-associated mechanisms of joint homeostasis lost in OA. Finally, using an equine model of synovitis, the last study investigated the response of normal and inflamed joints to autologous BMNC injection. Inflamed joints treated with BMNC showed gross and analytical improvements in synovial fluid and synovial membrane, with increasing numbers of regulatory macrophages and synovial fluid concentrations of IL-10, not observed in saline-treated controls. Autologous BMNC are readily available, downregulate synovitis through macrophage-associated effects, and can benefit thousands of patients with OA. Combined, the results of these studies support the role of macrophage-driven synovial homeostasis and identified a therapeutic way to recover homeostatic mechanisms of synovial macrophages lost during chronic inflammation. Our findings also uncover new research directions and methods for future studies targeting modulation of joint inflammation. / Doctor of Philosophy / Osteoarthritis (OA) is a common cause of joint deterioration in people and horses. Current treatments provide limited recovery of joint function, creating an urgent need for more efficient therapies; however, development of new treatments requires better understanding of the mechanism causing OA. A shared characteristic among many arthritic conditions is long-standing inflammation. Cells called macrophages are the main drivers of joint inflammation and can exert pro- and anti-inflammatory effects. Macrophages promote joint health by clearing aggressor agents and secreting molecules required for optimal joint function. However, when these housekeeping functions are overwhelmed by damage, macrophages drive inflammation recruiting more cells to cope with increased demands for repair. If this process is efficiently accomplished, macrophages then resolve inflammation, recovering joint health. Macrophages in the bone marrow (BMNC - bone marrow mononuclear cells) are used to treat inflammation in several tissues and are known to produce molecules essential for joint health. Although little information exists regarding their use in joints, studies treating different organs suggest it can provide high rewards. The studies presented in this dissertation focused on understanding the dual function of macrophages in driving and controlling joint inflammation, and harnessed their therapeutic potential. In the first study, macrophages were investigated in normal and OA-affected joints, and curiously exhibited a hybrid pro- and anti-inflammatory identity in both groups. The indicators of this mixed identity were more markedly expressed in arthritic joints showing gross inflammation. Low levels of a macrophage-derived anti-inflammatory protein called IL-10 were detected in OA joints. The results of this study suggest that anti-inflammatory mechanisms from macrophages may be overwhelmed in OA-affected joints, preventing inflammation to be resolved, and that recovering this anti-inflammatory function may aid in the treatment of OA. In the second study we investigated how the incubation of BMNC in fluid from normal and inflamed joints affects the response of macrophages. Similar to what we observed in the first study, BMNC incubated in both normal and inflamed joint fluid induced macrophages to develop a hybrid identity that was ultimately similar to native cells from normal joints. Macrophages proliferated more when incubated in fluid from inflamed joints. Macrophages in both groups produced anti-inflammatory effects with high levels of IL-10 that were highest in ISF cultures. These observations suggest that higher proliferation of macrophages in inflamed joint fluid helped preserve anti-inflammatory mechanisms. Therefore, our study suggests that joint injection with BMNC could maximize macrophage- and IL-10-associated mechanisms required to resolve joint inflammation. The third and final study investigated the response of normal and inflamed joints to BMNC injection using a model of joint inflammation in horses. Inflamed joints treated with BMNC showed visual and laboratorial markers of improvement, with increasing numbers of macrophages and concentrations of IL-10 in the joint fluid, which remained lower in joints treated with placebo. BMNC provide means to recover macrophage-associated effects required to control joint inflammation and can benefit thousands of patients with OA. Together, the results of these studies show that macrophages are biased promoters of joint health, leading to inflammation when their anti-inflammatory mechanisms are overwhelmed. Replenishing inflamed joints with healthy macrophages maximizes their anti-inflammatory effects, favoring the recovery of a healthy articular environment.
50

Estudo in vitro do potencial de diferenciação condrogênico e osteogênico de células mesenquimais obtidas de líquido e membrana sinovial de equinos / Chondrogenic and osteogenic differentiation potential of mesenchymal cells from equine synovial fluid and synovial membrane - in vitro study

Fülber, Joice 20 May 2015 (has links)
Na espécie equina, as enfermidades osteoarticulares causam prejuízo econômico e impacto negativo no desempenho atlético, devido aos danos causados na cartilagem articular. A regeneração da cartilagem hialina e a manutenção da integridade das estruturas que a compõe norteiam a busca do tratamento ideal. Neste contexto, este estudo foi delineado com o objetivo de investigar a presença de células-tronco mesenquimais (CTMs) no líquido sinovial (LS) e na membrana sinovial (MS) de equinos com articulações hígidas, com osteocondrite dissecante (OCD) e com osteoartrite (OA) e compará-las, visando estabelecer qual fonte celular possui melhor característica fenotípica e capacidade de diferenciação celular, mais especificamente, aquela que seja superior em relação à capacidade condrogênica. Foram utilizados equinos machos e fêmeas de diferentes idades, totalizando 97 articulações. O LS e MS foram coletados durante artroscopia e as células foram cultivadas, e avaliadas por citometria de fluxo com os anticorpos CD44, CD90, CD105, CD34; e por imunocitoquímica com os anticorpos nanog, oct4, PGP 9.5, lisozima, vimentina e citoqueratina. Adicionalmente, o potencial de diferenciação das células foi avaliado para as linhagens condrogênica, osteogênica e adipogênica. Foi realizado teste de tumorigenicidade em camundongos Balb-Cnu/nu, para comprovar aplicabilidade clínica, e posteriormente, as CTMs provenientes de LS de articulações hígidas foram aplicadas em articulações de equinos. A identidade das células foi comprovada durante o cultivo demonstrando características de adesão ao plástico e morfologia fibroblastóide. A média percentual das populações positivas para CD90 foi de 64,9% (LS-H), 48,3% (LS-OCD), 48,1% (LS-OA), 66,6% (MS-H), 40,2% (MS-OCD) e 40,3% (MS-OA). A porcentagem de células positivas para CD44 foi de 1,18% (LS-H), 3,98% (LS-OCD), 14,2% (LS-OA), 1,9% (MS-H), 2,17% (MS-OCD) 8,56% (MS-OA). Não foi observada expressão dos anticorpos CD34 e CD105. Na análise imunocitoquímica foi detectada expressão positiva para os anticorpos: lisozima, PGP 9.5, PCNA e vimentina, e negativa para nanog, oct4 e citoqueratina. A multipotência (osteogênica, condrogênica e adipogênica) das células foi confirmada através da coloração Alizarin Red para detecção de matriz de cálcio, Oil Red O para detecção de gotículas de gordura e azul de toluidina, alcian blue e hematoxilina eosina para detecção de matriz de proteoglicanos. Com relação aos resultados do teste tumorigênico, nenhum órgão dos camundongos foi afetado, assegurando a aplicabilidade das células estudadas. Ainda, as articulações de equinos tratadas, não apresentaram quaisquer sinais de reação inflamatória após aplicação de células alogênicas. Por fim, concluímos que, a fenotipagem positiva de CD44 e CD90 somada à capacidade de diferenciação nas linhagens osteogênica e condrogênica confirma a presença de CTMs nas populações celulares obtidas de LS e MS de equinos. Também foi observado que as células de LS provenientes de articulações hígidas, são as de melhor utilização clínica, uma vez que apresentaram maior expressão de CD90 e demonstraram melhor capacidade de diferenciação celular em relação às células derivadas de articulações enfermas. Além disso, possuem método mais fácil de colheita em relação à colheita de MS, visando futura terapia celular na rotina clínica / In the equine species, osteoarticular diseases cause significant economic losses and negative impact on equine athletic performance. The hyaline cartilage regeneration and the maintenance of integrity of its components guide the search for the ideal treatment. In this scenario, this study aimed to investigate the presence of mesenchymal stem cell (MSCs) in the synovial fluid (SF) and in the synovial membrane (SM) of healthy equine joints, osteoarthritic (OA) and osteochondritic joints (OCD), comparing their potential as cellular sources, according to their differentiation ability, in particular with superior chondrogenic potential and the phenotypic characteristics of the MSCs. Ninety-seven equine joints from males and females of different ages were used to harvest cells. SF and SM were obtained during arthroscopy and the cells SF and SM were cultured and assessed for CD90, CD44, CD105 and CD34 markers by flow cytometry, and nanog, oct4, PGP 9.5, lyzozyme, vimentin and cytokeratin were assessed by immunocytochemistry. Additionally, cells were evaluated in vitro for their osteogenic, adipogenic and chondrogenic differentiation potential. The tumorigenicity test was carried in Balb-C nu/nu mice, to verify the safety of cell sources and, later, mesenchymal stem cells harvested from healthy equine joints were injected into equine joints. The identity of these cells was confirmed during cell growth, through properties of plastic adhesion and fibroblastoid morphology. The mean percentage of CD90 positive cells was 64.9% (SF-H), 48.3% (SF-OCD), 48.1% (SF-OA), 66.6% (SM-H), 40.2% (SM- OCD) and 40.3% (SM-OA). The percentage of CD44 positive cells was 1.18 % (SF-H), 3.98% (SF-OCD), 14.2% (SF-OA), 1.9% (SM-H), 2.17% (SM-OCD) and 8.56% (SM-OA). The expression of CD34 and CD105 antibodies was not observed. Through immunocytochemical analysis, expression for lysozyme, PGP9.5, PCNA e vimentin antibodies was detected and negative expression for nanog, oct4 e cytokeratin was observed. The multipotent capacity of mesenchymal stromal cells for lineage differentiation (osteogenic, chondrogenoic and adipogenic) was confirmed with different staining techniques: Alizarin Red enabled detection of the calcium matrix, Oil Red O enabled the detection of fat droplets and Toluidin Blue, Alcian Blue and haematoxylin eosin enabled detection of proteoglycan matrix. Results of tumorigenic tests in mice showed no compromise of any internal organ, assuring applicability of the studied cells. Furthermore, equine joints treated with MSC harvested from healthy joints did not show any signs of an inflammatory reaction after injection of the allogeneic cells. The presence of cells with positive CD44 and CD90 phenotypes and with the ability to differentiate into osteogenic and chondrogenic lineages confirms the presence of MSCs in equine SF and SM. Cells obtained from healthy SF were more suitable for clinical application, for they presented higher CD90 expression and demonstrated greater differentiation capabilities, when compared to that of cells retrieved from compromised joints. In addition to that, SF derived cells are easier to obtain when compared to SM cells, aiming their future application clinical

Page generated in 0.0369 seconds