• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthetic aperture imaging algorithms : with application to wide bandwidth sonar

Hawkins, David William January 1996 (has links)
This thesis contains the complete end-to-end simulation, development, implementation, and calibration of the wide bandwidth, low-Q, Kiwi-SAS synthetic aperture sonar (SAS). Through the use of a very stable towfish, a new novel wide bandwidth transducer design, and autofocus procedures, high-resolution diffraction limited imagery is produced. As a complete system calibration was performed, this diffraction limited imagery is not only geometrically calibrated, it is also calibrated for target cross-section or target strength estimation. Is is important to note that the diffraction limited images are formed without access to any form of inertial measurement information. Previous investigations applying the synthetic aperture technique to sonar have developed processors based on exact, but inefficient, spatial-temporal domain time-delay and sum beamforming algorithms, or they have performed equivalent operations in the frequency domain using fast-correlation techniques (via the fast Fourier transform (FFT)). In this thesis, the algorithms used in the generation of synthetic aperture radar (SAR) images are derived in their wide bandwidth forms and it is shown that these more efficient algorithms can be used to form diffraction limited SAS images. Several new algorithms are developed; accelerated chirp scaling algorithm represents an efficient method for processing synthetic aperture data, while modified phase gradient autofocus and a low-Q autofocus routine based on prominent point processing are used to focus both simulated and real target data that has been corrupted by known and unknown motion or medium propagation errors.
2

The Study of Synthetic Aperture Sonar System

Sung, Chen-Hung 31 August 2010 (has links)
This research is to study the fundamental theory of Synthetic Aperture Sonar (SAS) through numerical simulation and experimental analysis. The basic principle of SAS is to enhance the capability of spatial resolution by moving the transducer element to increase aperture so that it achieves a better resolution. The factors affecting the capability of resolution include the actual size of the transducers, frequency and its bandwidth, pulse length, and moving speeds. The effects of various factors on the resolution were examined through numerical simulation. The results have shown that the smaller the true size of the transducer, the better the resolution. Moreover, when the bandwidth is increased, the resolution also increases. The SAS is sensitive to the speed of movement due to the fact that data acquisition may be limited, therefore the speed can not be too high, e.g., less than 1.5 m/s. The experiment was carried out in a water tank of size 4 m x 3.5 m x 2 m. The transducers of AST MK VI 192 kHz were employed to transmit and receive signals. Copper spheres of various sizes (3 cm, 6 cm, 8 cm diameter) were used as targets. The data were obtained and analyzed, and the results have shown that the resolution may be achieved by SAS analysis, establishing the fundamental principle and offering opportunity for future study.
3

Underwater Acoustic Modelling for Synthetic Aperture Sonar

Hunter, Alan Joseph January 2006 (has links)
Underwater acoustic modelling is an important aspect of Synthetic Aperture Sonar (SAS) system design and algorithm development. Sea-trials are an expensive and time-consuming exercise and simulations provide an efficient and economic alternative. However, there are few simulators (in the open literature) that can efficiently provide realistic SAS data for large, complicated scenes. Conventional side-scan sonar simulators are not suitable for SAS data simulation. These simulators utilise narrow-beam and narrow-band approximations; typical SAS systems are wide-beam and wide-band and these approximations are invalid. Moreover, conventional side-scan sonar is a non-coherent imaging technique and SAS processing relies on the phase. Existing SAS simulators are capable of modelling very simple scenes only. They utilise a decomposition of the scene into point or smooth facet primitives, which is very inefficient. Many primitives are required and this imposes a severe restriction on scene complexity and size. This thesis presents a rigorous mathematical framework for the modelling of SAS imagery. A novel acoustic scattering model is developed and its implementation in a wide-beam and wide-band, multiple-receiver Interferometric SAS (InSAS) simulator is detailed. The scattering model utilises a decomposition of the scene into rough (rather than smooth) facet primitives. The use of rough facet primitives provides a significant increase in computational efficiency since scenes are decomposed into fewer primitives. This facilitates the simulation of larger and more complicated scenes. Each rough facet is characterised by its far-field beampattern. The statistics of the beampattern are related to the facet shape and roughness statistics using the Kirchhoff approximation. The beampattern is realised from its first and second-order statistics. The SAS imagery is obtained using a coherent sum of the facet responses and occlusions and multiple-scattering are resolved by ray-tracing. The simulator is implemented for use on a parallel computing cluster. The simulator is shown to provide realistic SAS data that is qualitatively and quantitatively similar to real data. The simulated results are considered, in many ways, superior to the simulated results in the literature.
4

Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

Giardina, Patricia E 15 December 2012 (has links)
The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques.
5

MIMO radar: signal processing, waveform design, and applications to synthetic aperture imaging

Davis, Michael Scott 08 June 2015 (has links)
This dissertation analyzes the capability of multiple-input, multiple-output (MIMO) radar techniques to improve the image quality and area-coverage rate of synthetic aperture imaging systems. A signal processing architecture for MIMO radar is used to understand the applicability of MIMO for synthetic aperture radar (SAR) and synthetic aperture sonar (SAS) systems. MIMO SAR/SAS is shown to be a natural extension of standard multichannel synthetic aperture imaging techniques to exploit transmit degrees of freedom in addition to those used on receive. Degradation in range sidelobe performance and the associated impact on image quality is identified as a key impediment to MIMO SAR/SAS. A novel mismatched filtering approach is presented to mitigate this issue. New results in sampling theory are derived that allow the aliasing that occurs when a wide-sense stationary random process is non-uniformly sampled to be quantified. These results are applied to the case of recurrent sampling and used to quantify the impact of azimuth ambiguities on MIMO SAR/SAS image contrast.
6

A multi-channel front-end for synthetic aperture sonar

Bonnett, Blair Cameron January 2010 (has links)
Synthetic aperture sonar (SAS) is a wide-beam sonar technique commonly used for mapping the seafloor at high resolution. The Acoustics Research Group at the University of Canterbury operates a towed SAS system known as KiwiSAS-IV. This is currently being redesigned with the aim of reducing the weight, size and power requirements of the system. The long term goal is to make it capable of being mounted on an autonomous underwater vehicle (AUV) so that mapping of remote and/or dangerous waters can be accomplished without human interaction. This thesis presents the design of the front-end electronics used to drive the 36 transducers to produce the acoustic beam and receive the returning signals after they have reflected off a target. To achieve sufficient range, the transducers are driven with a 200 Vₚ₋ₚ signal with a maximum frequency of 110 kHz. This design uses class D switching amplifiers to generate these waveforms. The AD9271 integrated circuit, which can handle eight transducers simultaneously, is used to amplify the incoming signals and sample them at up to 50 MHz. This high sampling rate multiplied by all 36 transducers results in an amount of data which is too great for a conventional microprocessor-based system to handle. Instead, an FPGA is used to receive this data, decimate it using multiplier-free cascaded integrator-comb (CIC) filters, and then pass it to the back-end system for further processing and storage. A prototype circuit was created to test the theory developed in this thesis. This showed that the system is capable of generating the necessary waveforms and amplifying, capturing, and decimating the returning signals. However, further refinement is required before it is able to be used in the sonar system.
7

Examination of the use of exact versus approximate phase weights on the performance of a synthetic aperture sonar system

Boland, Matthew R. 03 1900
Approved for public release; distribution in unlimited. / Synthetic aperture sonar beamforming and signal processing relies on properly steering and focusing the aperture beam pattern in order to co-phase all the received signals. Due to the effects of motion in the synthetic aperture sonar problem, the propagation path between the transmitter, discrete point scatterer, and the receiver is time varying. Traditionally, simple approximations are used to determine these propagation ranges and angles of incidence and scatter. Methods to determine these ranges and angles exactly may significantly improve array gain and, therefore, target detection. This thesis investigates improvements to SAS signal processing algorithms using exact methods for the calculation of the time-varying ranges between transmitter and discrete point scatter, and between discrete point scatter and receiver, and the phase angle of the scattered acoustic signal incident upon the receiver. Using computer simulations, exact range and angle calculations were performed for different scenarios and compared to ranges and angles determined using standard approximations. The exact ranges were then used to determine incident phase, and were again compared to the approximate methods. Comparison of the exact and approximate methods was based on range estimation error and percentage error. Improvements in synthetic aperture array gain using exact phase weights based on exact, time-varying range solutions are proposed. / http://hdl.handle.net/10945/1142 / Lieutenant, United States Navy
8

The Study of Synthetic Aperture Sonar System: Analysis of Range Resolution

Chang, Tzu-hsuan 28 July 2011 (has links)
The basic principle in SAS is to use an array which is small in length to create a long synthetic array thus the better resolution is achieved through the use of signal processing. Additionally, the resolution that is independent of range and signal frequency, makes SAS a advantageous tool for applications. Although the origin of SAS comes from SAR, SAS still needs to overcome all constraints for real-world application. In a previous study by Sung and prof. Liu, published results of the along track resolution experiments which were well done however there was still much room in range resolution, the purpose of this research is to achieve high range resolution at any ranges. Indeed there are many existing factors affecting the capability of resolution which including characteristic of the target, certain arrangements of targets, bandwidth, waveforms and pulse duration and etc. High range resolution is obtained using pulse compression techniques. The experiments were carried out using the transducers of AST MK VI 192 kHz which were employed to transmit and receive signals, scanned various copper balls at anechoic water tank(4 m ¡Ñ 3.5 m ¡Ñ 2 m) in NSYSU. From the equipment we have now results were evaluated based on both simulated and real data: for the range resolution the pulse length is very important the shortest pulse length on an object would be 2L/c theoretically, the measured range resolution is about 7.5 cm for the 20-kHz bandwidth signals and 5 cm for along track resolution. As all the experiments have been successful in the Water Tank, we intent to launch further investigation of this research to the real world application of SAS i.e. in Sizihwan Bay Marine Test Field.
9

Design and implementation of sensor fusion for the towed synthetic aperture sonar

Meng, Rui Daniel January 2007 (has links)
For synthetic aperture imaging, position and orientation deviation is of great concern. Unknown motions of a Synthetic Aperture Sonar (SAS) can blur the reconstructed images and degrade image quality considerably. Considering the high sensitivity of synthetic aperture imaging technique to sonar deviation, this research aims at providing a thorough navigation solution for a free-towed synthetic aperture sonar (SAS) comprising aspects from the design and construction of the navigation card through to data postprocessing to produce position, velocity, and attitude information of the sonar. The sensor configuration of the designed navigation card is low-cost Micro-Electro-Mechanical-Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) sensors including three angular rate gyroscopes, three dual-axial accelerometers, and a triaxial magnetic hybrid. These MARG sensors are mounted orthogonally on a standard 180mm Eurocard PCB to monitor the motions of the sonar in six degrees of freedom. Sensor calibration algorithms are presented for each individual sensor according to its characteristics to precisely determine sensor parameters. The nonlinear least square method and two-step estimator are particularly used for the calibration of accelerometers and magnetometers. A quaternion-based extended Kalman filter is developed based on a total state space model to fuse the calibrated navigation data. In the model, the frame transformations are described using quaternions instead of other attitude representations. The simulations and experimental results are demonstrated in this thesis to verify the capability of the sensor fusion strategy.
10

Synthetic Aperture Sonar Micronavigation Using An Active Acoustic Beacon.

Pilbrow, Edward Neil January 2007 (has links)
Synthetic aperture sonar (SAS) technology has rapidly progressed over the past few years with a number of commercial systems emerging. Such systems are typically based on an autonomous underwater vehicle platform containing multiple along-track receivers and an integrated inertial navigation system (INS) with Doppler velocity log aiding. While producing excellent images, blurring due to INS integration errors and medium fluctuations continues to limit long range, long run, image quality. This is particularly relevant in mine hunting, the main application for SAS, where it is critical to survey the greatest possible area in the shortest possible time, regardless of sea conditions. This thesis presents the simulation, design, construction, and sea trial results for a prototype "active beacon" and remote controller unit, to investigate the potential of such a device for estimating SAS platform motion and medium fluctuations. The beacon is deployed by hand in the area of interest and acts as an active point source with real-time data uploading and control performed by radio link. Operation is tightly integrated with the operation of the Acoustics Research Group KiwiSAS towed SAS, producing one-way and two-way time of flight (TOF) data for every ping by detecting the sonar chirps, time-stamping their arrival using a GPS receiver, and replying back at a different acoustic frequency after a fixed time delay. The high SNR of this reply signal, combined with the knowledge that it is produced by a single point source, provides advantages over passive point-like targets for SAS image processing. Stationary accuracies of < 2 mm RMS have been measured at ranges of up to 36m. This high accuracy allowed the beacon to be used in a separate study to characterise the medium fluctuation statistics in Lyttelton Harbour, New Zealand, using an indoor dive pool as a control. Probability density functions were fitted to the data then incorporated in SAS simulations to observe their effect on image quality. Results from recent sea trials in Lyttelton Harbour show the beacon TOF data, when used in a narrowband motion compensation (MOCOMP) process, provided improvements to the quality of SAS images centred on frequencies of 30 kHz and 100 kHz. This prototype uses simple matched-filtering algorithms for detection and while performing well under stationary conditions, the fluctuations caused by the narrow sonar transmit beam pattern (BP) and changing superposition of seabed multipath often cause dropouts and inaccurate detections during sea trials. An analysis of the BP effects and how the accuracy and robustness of the detection algorithms can be improved is presented. Overcoming these problems reliably is difficult without dedicated large scale testing facilities to allow conditions to be reproduced consistently.

Page generated in 0.1259 seconds