Spelling suggestions: "subject:"systèmes stochastique""
11 |
Rigorous System-level Modeling and Performance Evaluation for Embedded System Design / Modélisation et Évaluation de Performance pour la Conception des Systèmes Embarqués : Approche Rigoureuse au Niveau SystèmeNouri, Ayoub 08 April 2015 (has links)
Les systèmes embarqués ont évolué d'une manière spectaculaire et sont devenus partie intégrante de notre quotidien. En réponse aux exigences grandissantes en termes de nombre de fonctionnalités et donc de flexibilité, les parties logicielles de ces systèmes se sont vues attribuer une place importante malgré leur manque d'efficacité, en comparaison aux solutions matérielles. Par ailleurs, vu la prolifération des systèmes nomades et à ressources limités, tenir compte de la performance est devenu indispensable pour bien les concevoir. Dans cette thèse, nous proposons une démarche rigoureuse et intégrée pour la modélisation et l'évaluation de performance tôt dans le processus de conception. Cette méthode permet de construire des modèles, au niveau système, conformes aux spécifications fonctionnelles, et intégrant les contraintes non-fonctionnelles de l'environnement d'exécution. D'autre part, elle permet d'analyser quantitativement la performance de façon rapide et précise. Cette méthode est guidée par les modèles et se base sur le formalisme $mathcal{S}$BIP que nous proposons pour la modélisation stochastique selon une approche formelle et par composants. Pour construire des modèles conformes au niveau système, nous partons de modèles purement fonctionnels utilisés pour générer automatiquement une implémentation distribuée, étant donnée une architecture matérielle cible et un schéma de répartition. Dans le but d'obtenir une description fidèle de la performance, nous avons conçu une technique d'inférence statistique qui produit une caractérisation probabiliste. Cette dernière est utilisée pour calibrer le modèle fonctionnel de départ. Afin d'évaluer la performance de ce modèle, nous nous basons sur du model checking statistique que nous améliorons à l'aide d'une technique d'abstraction. Nous avons développé un flot de conception qui automatise la majorité des phases décrites ci-dessus. Ce flot a été appliqué à différentes études de cas, notamment à une application de reconnaissance d'image déployée sur la plateforme multi-cœurs STHORM. / In the present work, we tackle the problem of modeling and evaluating performance in the context of embedded systems design. These have become essential for modern societies and experienced important evolution. Due to the growing demand on functionality and programmability, software solutions have gained in importance, although known to be less efficient than dedicated hardware. Consequently, considering performance has become a must, especially with the generalization of resource-constrained devices. We present a rigorous and integrated approach for system-level performance modeling and analysis. The proposed method enables faithful high-level modeling, encompassing both functional and performance aspects, and allows for rapid and accurate quantitative performance evaluation. The approach is model-based and relies on the $mathcal{S}$BIP formalism for stochastic component-based modeling and formal verification. We use statistical model checking for analyzing performance requirements and introduce a stochastic abstraction technique to enhance its scalability. Faithful high-level models are built by calibrating functional models with low-level performance information using automatic code generation and statistical inference. We provide a tool-flow that automates most of the steps of the proposed approach and illustrate its use on a real-life case study for image processing. We consider the design and mapping of a parallel version of the HMAX models algorithm for object recognition on the STHORM many-cores platform. We explored timing aspects and the obtained results show not only the usability of the approach but also its pertinence for taking well-founded decisions in the context of system-level design.
|
12 |
La métaheuristique CAT pour le design de réseaux logistiques déterministes et stochastiquesCarle, Marc-André 19 April 2018 (has links)
De nos jours, les entreprises d’ici et d’ailleurs sont confrontées à une concurrence mondiale sans cesse plus féroce. Afin de survivre et de développer des avantages concurrentiels, elles doivent s’approvisionner et vendre leurs produits sur les marchés mondiaux. Elles doivent aussi offrir simultanément à leurs clients des produits d’excellente qualité à prix concurrentiels et assortis d’un service impeccable. Ainsi, les activités d’approvisionnement, de production et de marketing ne peuvent plus être planifiées et gérées indépendamment. Dans ce contexte, les grandes entreprises manufacturières se doivent de réorganiser et reconfigurer sans cesse leur réseau logistique pour faire face aux pressions financières et environnementales ainsi qu’aux exigences de leurs clients. Tout doit être révisé et planifié de façon intégrée : sélection des fournisseurs, choix d’investissements, planification du transport et préparation d’une proposition de valeur incluant souvent produits et services au fournisseur. Au niveau stratégique, ce problème est fréquemment désigné par le vocable « design de réseau logistique ». Une approche intéressante pour résoudre ces problématiques décisionnelles complexes consiste à formuler et résoudre un modèle mathématique en nombres entiers représentant la problématique. Plusieurs modèles ont ainsi été récemment proposés pour traiter différentes catégories de décision en matière de design de réseau logistique. Cependant, ces modèles sont très complexes et difficiles à résoudre, et même les solveurs les plus performants échouent parfois à fournir une solution de qualité. Les travaux développés dans cette thèse proposent plusieurs contributions. Tout d’abord, un modèle de design de réseau logistique incorporant plusieurs innovations proposées récemment dans la littérature a été développé; celui-ci intègre les dimensions du choix des fournisseurs, la localisation, la configuration et l’assignation de mission aux installations (usines, entrepôts, etc.) de l’entreprise, la planification stratégique du transport et la sélection de politiques de marketing et d’offre de valeur au consommateur. Des innovations sont proposées au niveau de la modélisation des inventaires ainsi que de la sélection des options de transport. En deuxième lieu, une méthode de résolution distribuée inspirée du paradigme des systèmes multi-agents a été développée afin de résoudre des problèmes d’optimisation de grande taille incorporant plusieurs catégories de décisions. Cette approche, appelée CAT (pour collaborative agent teams), consiste à diviser le problème en un ensemble de sous-problèmes, et assigner chacun de ces sous-problèmes à un agent qui devra le résoudre. Par la suite, les solutions à chacun de ces sous-problèmes sont combinées par d’autres agents afin d’obtenir une solution de qualité au problème initial. Des mécanismes efficaces sont conçus pour la division du problème, pour la résolution des sous-problèmes et pour l’intégration des solutions. L’approche CAT ainsi développée est utilisée pour résoudre le problème de design de réseaux logistiques en univers certain (déterministe). Finalement, des adaptations sont proposées à CAT permettant de résoudre des problèmes de design de réseaux logistiques en univers incertain (stochastique).
|
13 |
Modélisation et analyse de systèmes stochastiques et temps réel / Modeling and Analysis of Stochastic Real-Time SystemsMediouni, Braham Lotfi 28 June 2019 (has links)
Dans cette thèse, nous abordons le problème de la modélisation et de la vérification de systèmes complexes présentant des comportements à la fois probabilistes et temporisés. La conception de tels systèmes est devenue de plus en plus complexe en raison de l’hétérogénéité des composants impliqués, l’incertitude découlant d’un environnement ouvert et les contraintes temps réelinhérentes à leurs domaines d’application. La gestion à la fois du logiciel et du matériel dans une vue unifiée tout en incluant des informations sur les performances (par exemple, temps de calcul et de communication, consommation d’énergie, etc.) devient indispensable. Construire et analyser des modèles de performance est d’une importance primordiale pour donner des garanties sur les exigences fonctionnelles et extra-fonctionnelles des systèmes, et permettre uneprise de décision fondée sur des mesures quantitatives dès les premières étapes de la conception.Cette thèse apporte plusieurs nouvelles contributions. Tout d’abord, nous introduisons un nouveau formalisme de modélisation appelé BIP stochastique et temps réel (SRT-BIP) pour la modélisation, la simulation et la génération de code de systèmes à base de composants. Ce formalisme hérite du framework BIP ses capacités de modélisation basées sur les composants et le temps réel et, en outre, il fournit des primitives pour exprimer des comportements stochastiquescomplexes.Deuxièmement, nous étudions des techniques d’apprentissage automatique pour faciliter la construction de modèles de performance. Nous proposons d’améliorer et d’adapter une procédure d’apprentissage présentée dans la littérature pour déduire des modèles stochastiques et temporisés à partir d’exécutions concrètes du système, et de les exprimer dans le formalisme SRT-BIP.Troisièmement, étant donné les modèles de performance dans SRT-BIP, nous explorons l’utilisation du model checking statistique (SMC) pour l’analyse d’exigences concernant la fonctionnalité et les performances du système. Pour ce faire, nous fournissons un framework complet, appelé SBIP, en tant qu’outil de support pour la modélisation, la simulation et l’analyse des systèmes SRT-BIP. SBIP est un environnement de développement intégré (IDE) qui implémente des algorithmes SMC pour des analyses quantitatives, qualitatives et d’événementsrares, en plus d’une procédure d’automatisation pour l’exploration des paramètres d’une propriété. Nous validons nos propositions sur des études de cas réels touchant à des domaines variés tels que les protocoles de communication, les systèmes concurrents et les systèmesembarqués.Enfin, nous étudions plus en détail l’intérêt du SMC lorsqu’il est inclus dans des méthodes d’analyse de système élaborées. Nous illustrons cela en proposant deux approches d’évaluation des risques. Dans la première approche, nous introduisons une méthodologie en spirale pour modéliser des systèmes résilients avec des composants FDIR que nous validons à travers l’évaluation de la sécurité du système de locomotion d’un rover d’exploration planétaire. La deuxième approche concerne l’évaluation des politiques de sécurité des organisations selon une approche de sécurité offensive. L’objectif est de synthétiser des configurations de défense efficaces contre des stratégies d’attaque optimisées (qui minimisent le coût d’attaque et maximisent la probabilité de succès). Ces stratégies d’attaque sont obtenues en combinant l’apprentissage de modèles et les méthodes méta-heuristiques, dans lesquels le SMC a le rôle principal d’évaluer et de prioriser les potentielles stratégies candidates. / In this thesis, we address the problem of modeling and verification of complex systems exhibiting both probabilistic and timed behaviors. Designing such systems has become increasingly complex due to the heterogeneity of the involved components, the uncertainty resulting from open environment and the real-time constraints inherent to their application domains. Handling both software and (abstraction of) hardware in a unified view while also including performanceinformation (e.g. computation and communication times, energy consumption, etc.) becomes a must. Building and analyzing performance models is of paramount importance in order to give guarantees on the functional and extra-functional system requirements and to make well-founded design decisions based on quantitative measures at early design stages.This thesis brings several new contributions. First, we introduce a new modeling formalism called Stochastic Real-Time BIP (SRT-BIP) for the modeling, the simulation and the code generation of component-based systems. This formalism inherits from the BIP framework its component-based and real-time modeling capabilities and, extends it by providing comprehensive primitives to express complex stochastic behaviors.Second, we investigate machine learning techniques to ease the construction of performance models. We propose to enhance and adapt a state-of-the-art learning procedure to infer stochastic real-time models from concrete system execution and to represent them in the SRT-BIP formalism.Third, given performance models in SRT-BIP, we explore the use of statistical Model Checking (SMC) for the anaysis of system’s functional and performance requirements. To do so, we provide a full framework, called SBIP, as a support tool for the modeling, simulation and analysis of SRT-BIP systems. SBIP is an Integrated Development Environment (IDE) that implements SMC algorithms for quantitative, qualitative and rare events analyses together with an automated exploring procedure for parameterized requirements. We validate our proposalson real-life case studies ranging from communication protocols and concurrent systems to embedded systems.Finally, we further investigate the interest of SMC when included in elaborated system analysis workflows. We illustrate this by proposing two risk assessment approaches. In the first approach, we introduce a spiral methodology to build resilient systems with FDIR components that we validate on the safety assessment of a planetary rover locomotion system. The second approach is concerned with the security assessment of organization’s defenses following an offensive security approach. The goal is to synthesize impactful defense configurations against optimized attack strategies (that minimize attack cost and maximize success probability). These attack strategies are obtained by combining model learning with meta heuristics, and where SMC is used to score and prioritize potential candidate strategies.
|
Page generated in 0.0812 seconds