• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Algorithms to Integrate Omics Data for Personalized Medicine

Ayati, Marzieh 31 August 2018 (has links)
No description available.
32

Development of cheminformatics-based methods for computational prediction of off-target activities

Banerjee, Priyanka 17 May 2017 (has links)
DieMenschheit ist vielfältigen chemischenWirkstoffen ausgesetzt – zum Beispiel durch Kosmetika und Pharmazeutika sowie durch viele andere chemische Quellen. Es wird angenommen, dass diese stetige Exposition mit Chemikalien gesundheitliche Beeinträchtigungen bei Menschen hervorruft. Zudem haben Regulierungsbehörden aus Europa und den USA festgestellt, dass es ein Risiko gibt, welches mit der kombinierten Exposition durch mehrere Chemikalien im Zusammenhang steht. Mögliche Kombinationen von Tausenden Wirkstoffen zu testen, ist sehr zeitaufwendig und nicht praktikabel. Das Hauptanliegen dieser Arbeit ist es, die Probleme von Off-target-Effekten chemischer Strukturen zu benennen – mit den Mitteln der Chemieinformatik, der strukturellen Bioinformatik sowie unter Berücksichtigung von computerbasierten, systembiologischen Ansätzen. Diese Dissertation ist in vier Hauptprojekte eingeteilt. ImProjekt I (Kapitel 3)wurde ein neuartiger Ensemble-Ansatz basierend auf der strukturellen Ähnlichkeit von chemischenWirkstoffen und Bestimmungen von toxischen Fragmenten implementiert,um die orale Toxizität bei Nagetieren vorherzusagen. Im Projekt II (Kapitel 4) wurden – auf der Grundlage von Daten des Tox21 Wettbewerbs – unterschiedliche Machine-Learning Modelle entwickelt und verglichen, um die Komponenten vorherzusagen, die in den toxikologischen Stoffwechselwegen mit Zielmolekülen interagieren von target-spezifischenWirkstoffen vorherzusagen. In Projekt III (Kapitel 5) wird ein neuartiger Ansatz beschrieben, welcher das dreigliedrige Konzept aus computerbasierter Systembiologie, Chemieinformatik und der strukturellen-Bioinformatik nutzt, um Medikamente zu bestimmen, welche das metabolische Syndrom hervorrufen. In Projekt IV (Kapitel 6) wurde in silico ein Screening Protokoll entwickelt, welches die strukturelle Ähnlichkeit, die pharmakophorischen Eigenschaften und die Überprüfung von computerbasierten Docking Studien berücksichtigt. / Exposure to various chemicals agents through cosmetics, medications, preserved food, environments and many other sources have resulted in serious health issues in humans. Additionally, regulatory authorities from Europe and United States of America have recognized the risk associated with combined exposure to multiple chemicals. Testing all possible combinations of these thousands of compounds is impractical and time consuming. The main aim of the thesis is to address the problem of off-targets effects of chemical structures by applying and developing cheminformatics, structural bioinformatics and computational systems biology approaches. This dissertation is divided into four main projects representing four different computational methods to aid different level of toxicological investigations. In project I (chapter 3) a novel ensemble approach based on the structural similarity of the chemical compounds and identifications of toxic fragments was implemented to predict rodent oral toxicity. In project II (chapter 4) different machine learning models were developed and compared using Tox 21 challenge 2014 data, to predict the outcomes of the compounds that have the potential to interact with the targets active in toxicological pathways. In project III (chapter 5) a novel approach integrating the trio concept of ’computational system biology, cheminformatics and structural bioinformatics’ to predict drugs induced metabolic syndrome have been described. In project IV (chapter 6) a in silico screening protocol was established taking into the structurally similarity, pharmacophoric features and validation using computational docking studies. This approach led to the identification of novel binding site for acyclovir in the peptide binding groove of the human leukocyte antigen (HLA) specific allele.
33

System biology modeling : the insights for computational drug discovery

Huang, Hui January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Traditional treatment strategy development for diseases involves the identification of target proteins related to disease states, and the interference of these proteins with drug molecules. Computational drug discovery and virtual screening from thousands of chemical compounds have accelerated this process. The thesis presents a comprehensive framework of computational drug discovery using system biology approaches. The thesis mainly consists of two parts: disease biomarker identification and disease treatment discoveries. The first part of the thesis focuses on the research in biomarker identification for human diseases in the post-genomic era with an emphasis in system biology approaches such as using the protein interaction networks. There are two major types of biomarkers: Diagnostic Biomarker is expected to detect a given type of disease in an individual with both high sensitivity and specificity; Predictive Biomarker serves to predict drug response before treatment is started. Both are essential before we even start seeking any treatment for the patients. In this part, we first studied how the coverage of the disease genes, the protein interaction quality, and gene ranking strategies can affect the identification of disease genes. Second, we addressed the challenge of constructing a central database to collect the system level data such as protein interaction, pathway, etc. Finally, we built case studies for biomarker identification for using dabetes as a case study. The second part of the thesis mainly addresses how to find treatments after disease identification. It specifically focuses on computational drug repositioning due to its low lost, few translational issues and other benefits. First, we described how to implement literature mining approaches to build the disease-protein-drug connectivity map and demonstrated its superior performances compared to other existing applications. Second, we presented a valuable drug-protein directionality database which filled the research gap of lacking alternatives for the experimental CMAP in computational drug discovery field. We also extended the correlation based ranking algorithms by including the underlying topology among proteins. Finally, we demonstrated how to study drug repositioning beyond genomic level and from one dimension to two dimensions with clinical side effect as prediction features.

Page generated in 0.0627 seconds