• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 20
  • 17
  • 16
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Remembrance of things future : involuntary and strategic processes in prospective memory reminders

Walker, Darren James January 2002 (has links)
No description available.
2

Testing the Interaction of Stimulus Repetition with Switch Costs Across Age Groups

LaGrone, Susan Rebecca 10 July 2007 (has links)
Task-switching studies are a popular measure of executive control, yet the influence of stimulus repetition in these studies is less well recognized. One theory from the literature states that stimuli associated with a certain response interfere with processing of those same stimuli in another task, contributing to task switching costs (Waszak, Hommel, &Allport, 2003). The current study varied stimulus repetition in younger and older adults and found that the previous task associated with a stimulus does influence overall performance but did not find the expected interaction of switch and repetition conditions. Results of this study extend our information about the role of stimulus repetition in task-switching studies as well as how this repetition relates to age differences in switch costs.
3

Validating the STOM Model Using MATB II and Eye-tracking

January 2020 (has links)
abstract: The choices of an operator under heavy cognitive load are potentially critical to overall safety and performance. Such conditions are common when technological failures arise, and the operator is forced into multi-task situations. Task switching choice was examined in an effort to both validate previous work concerning a model of task overload management and address unresolved matters related to visual sampling. Using the Multi-Attribute Task Battery and eye tracking, the experiment studied any influence of task priority and difficulty. Continuous visual attention measurements captured attentional switches that do not manifest into behaviors but may provide insight into task switching choice. Difficulty was found to have an influence on task switching behavior; however, priority was not. Instead, priority may affect time spent on a task rather than strictly choice. Eye measures revealed some moderate connections between time spent dwelling on a task and subjective interest. The implication of this, as well as eye tracking used to validate a model of task overload management as a whole, is discussed. / Dissertation/Thesis / Masters Thesis Human Systems Engineering 2020
4

Spatial attention in task switching

Longman, Cai Stephen January 2014 (has links)
This thesis is a systematic investigation of preparatory reorienting of task-relevant spatial attention. Task switching experiments typically report a performance overhead when the current task is different to that performed on the previous trial relative to when the task repeats. This ‘switch cost’ tends to reduce as participants are given more time to prepare (consistent with an active reconfiguration process) but a ‘residual’ switch cost usually remains even at very long preparation intervals (often interpreted as evidence of carryover of response selection parameters from the previous trial which are immune to preparation). Although attentional selection of perceptual attributes is often considered to be part of task-set and is included in some models of task-set control, little research has investigated the dynamics of this component in detail. Over a series of seven experiments in which tasks were consistently mapped to screen locations, eye-tracking was used to systematically investigate task-relevant spatial selection of perceptual attributes during the preparation interval and early after stimulus onset. Experiment 1 revealed a switch-induced delay in appropriate attention orientation and a measure of ‘attentional inertia’ which could not be explained by task-independent re-orienting to locations or low-level oculomotor phenomena but were markers of task-relevant spatial selection. Experiment 2 provided a sensitive measure of both of these attentional handicaps and demonstrated that they both contribute to the switch cost (including its residual component). Although attentional inertia reduced with preparation, both handicaps were present at the longest preparation intervals. The constancy of the delay in attending to the relevant attribute reflects the effort to re-allocate attention, rather than peculiarities of spatial orienting when the cue and stimulus are presented near-simultaneously on trials with short cue-stimulus intervals. The presence of attentional inertia in blocks with long preparation intervals suggested some component of inertia immune to preparation (though see Experiments 5 and 6 below). Experiments 3 and 4 investigated the extent to which attentional selection can be decoupled from other task-set components. Cues which explicitly provided location information reduced (or eliminated) the attentional effects found in Experiment 2 indicating that attentional selection can be decoupled from other task-set components. However, Experiment 3 found that the ‘natural’ state is for attentional selection to be coupled at least to a degree (and accessed via) task-set. Experiment 5 combined eye-tracking with ERPs to investigate the relative order of attentional selection and reconfiguration of other task-set components. A well-documented ERP marker of task-set preparation always followed onset of the first fixation on the currently relevant stimulus element indicating that (at least some) task-set components are reconfigured in a serial order with spatial selection preceding other components (e.g., loading of S-R rules or other parameters into working memory). Experiments 6 and 7 investigated the nature of attentional inertia. In Experiment 6 participants were given ultimate control over the duration of the preparation interval which eliminated attentional inertia (at least as indexed by preferential fixation of the previously relevant element on switch trials). In Experiment 7 the stimulus comprised three items which were from perceptually distinct classes (digits, letters, objects) to investigate whether the presence of task-specific features would elicit extra attentional inertia and whether early spatial selection was effective enough to block the processing of task-irrelevant features once the stimulus was presented. Although there was some evidence that the previously relevant stimulus element ‘captured’ attention, this tendency was modest in the fixations and absent in performance measures (response congruence effects).
5

Cortical regions involved in proactive control of task-set

Stevens, Tobias January 2011 (has links)
This thesis is about what happens in the brain when people switch between tasks. Each task requires a particular assembly of cognitive processes, an orientation of attention and set of rules relating action to input — a "task-set". The research reported used a task-cueing paradigm to study preparatory control of task-set. On each trial a stimulus (a coloured shape) was preceded by a verbal task-cue specifying which task to do (judge the shape or the colour of the stimulus). Reaction time and error rate increase on trials when the task changes relative to trials on which it does not. When the cue stimulus interval (CSI) is increased, this "switch cost" is reduced, indexing a process of task-set reconfiguration in which top-down control is employed to reconfigure the task-set parameters. Effective reconfiguration may also be indicated by a reduction in the "response congruence effect" — poorer performance on stimuli mapped to different responses for the two tasks than for stimuli mapped to the same response. I present six experiments using transcranial magnetic stimulation (TMS), a technique for interfering briefly and harmlessly with neuronal activity in a small region of cortex, to address the question of which brain regions contribute to anticipatory control of task-set as indexed by these behavioural measures. To help guide the selection of candidate brain regions, I first present a review and meta-analysis of neuroimaging studies of task-switching in the literature. Many fMRI studies, comparing brain activation on task-switch and -repeat trials have been published. Some have also tried to isolate activations related specifically to pro-active control of task-set. The activations reported are quite inconsistent over studies. I used a quantitative meta-analysis technique to identify which brain regions are most consistently found by studies reporting switch minus repeat contrasts and which may be specifically important for preparation on switch trials. The experiments examined the effect of stimulating several regions during the long cue-stimulus interval of a task-cueing paradigm, relative to control conditions. A first pair of experiments suggests an important role in proactive task-set control for two regions in dorsal medial frontal cortex, the supplementary motor area (SMA) and an area known as pre-SMA, though the former region appeared to contribute to reducing the switch cost while the latter appeared to reduce the effects of response congruence. In a further three experiments, I examined the role of the right intra-parietal sulcus (rIPS); this appears to play a crucial role in preparation for a task-switch but not post-stimulus task-set reconfiguration. In a final experiment, I used TMS guided by fMRI activations in the same participants to study the effects of stimulation over the left inferior frontal junction (IFJ). The results indicate that a region just anterior to the left IFJ is specifically important for preparing for a switch trial. I discuss the roles that may be played by these three regions in task-set control.
6

Task-set control and procedural working memory

van't Wout, Felice Maria January 2012 (has links)
Flexible and goal-driven behaviour requires a process by which the appropriate task-set is selected and maintained in a privileged state of activation. This process can be conceptualised as loading a task-set into a procedural working memory (PWM) buffer. Task switching experiments, which exercise this process, reveal “switch costs”: increased reaction times and error rates when the task changes, compared to when it repeats. The process of loading a task-set into PWM may be one source of these costs. The switch cost is reduced with preparation, suggesting that at least some of the processes involved in a successful change of task can be achieved in advance of the stimulus. The aim of this thesis was to investigate the properties of PWM, and its contribution to task-set control. One account of PWM distinguishes between the level at which recently exercised (but currently irrelevant) task-sets are represented, and the level at which only the currently relevant task-set is maintained in a most active state. To distinguish between these levels of representation, and to assess the extent to which the process of getting a task-set into a most-active state (loading it into the PWM buffer) is subject to a capacity limit at each level, the experiments varied the number of tasks participants switched among (Experiments 1 and 2), and the complexity of individual task-sets (Experiments 3-6) in a task-cueing paradigm. In Experiments 1 and 2, participants switched among three or five tasks, in separate sessions. There was no effect of the number of tasks on the switch cost, or its reduction with preparation, provided that recency and frequency of task usage were matched. When recency and frequency were not matched, there appeared to be a larger switch cost with five tasks at a short preparation interval, suggesting that the time consumed by getting a task-set into a most active state is influenced by its recency and frequency of usage, not the number of alternatives per se. However, Experiment 3 showed that the time required to select an S-R mapping within a task-set does increase as a function of the number of alternatives (even when stimulus frequency and recency are matched), suggesting that representation of the most active task-set in a PWM buffer is subject to a strict capacity limit. Experiments 4-6 further investigated the capacity limit of this PWM buffer, and found that task-set preparation was more effective for task-sets that are less complex (i.e. specified by fewer S-R rules). These findings suggest that only very few S-R rules can be maintained in a most active state in the PWM buffer. Finally, Experiments 7-9 investigated whether S-R rules are represented phonologically for task-set maintenance and preparation, by manipulating the phonological properties of the stimulus terms. But task-cueing performance was not affected by the name length (Experiment 7) or phonological similarity (Experiments 8 and 9) of the stimulus terms. These results suggest that phonological representations of S-R rules do not make a functional contribution to task-set control, possibly because the rules are compiled into a non-linguistic PWM. The results of these experiments are discussed in terms of a procedural working memory which is separate from declarative working memory, and distinguishes between two levels of task-set control: the level of task-sets, which are maintained in a capacity unlimited state of representation, and the level at which the currently relevant task-set is maintained in a most-active but highly capacity limited state of representation.
7

Behavioural and Electrophysiological Correlates of Anticipatory Task-Set Reconfiguration

Nicholson, Rebecca Anne January 2006 (has links)
The concept of a unitary cognitive control system has increasingly come under question. Numerous paradigms have emerged that aim to dissect cognitive control into its constituent processes, including task-switching paradigms that require alternation between multiple tasks. A switch in task is associated with increased reaction time (RT) as compared to a repeat in task, which is proposed to at least partially reflect processes associated with reconfiguration of the currently active task-set. Previous event-related brain potential studies show a differential positivity emerging prior to a switch in task that appears to reflect anticipatory task-set reconfiguration. Six experiments were conducted that investigated the behavioural and ERP correlates of task-switching, and in particular, the cognitive control processes involved in anticipatory task-set reconfiguration. Experiment 1 dissociated the effects of passive dissipation of task-set interference from anticipatory task-set reconfiguration. In Experiment 2, it was further verified that the switch-related differential positivity reflects processes associated with anticipatory task-set reconfiguration, particularly initiation of the new task-set. A simplified paradigm was developed in Experiment 3 that maximised engagement in anticipatory task-set reconfiguration, reducing mean RT switch cost. Experiment 4 demonstrated that the RT switch cost and differential positivity in cueing paradigms are associated with task-set reconfiguration rather than a cue repetition benefit. Consistent with previous brain imaging studies, Experiment 5 revealed that anticipatory task-set reconfiguration is associated with increased activation in the prefrontal cortex and parietal lobe. These findings show that task-set reconfiguration processes are activated when switching between tasks and that this consists of multiple components including the active utilisation of cognitive control processes in anticipatory task-set reconfiguration. Task-switching paradigms are thus a useful tool for investigating control processes in healthy populations and as Experiment 6 demonstrates, in clinical populations that have deficits in control processes, such as patients with schizophrenia. / PhD Doctorate
8

Does What You Do Before Class Matter?

Zhou, Elayne 31 October 2018 (has links)
No description available.
9

HORTAS: A Horserace Model of Cognitive Control in Task Switching

Park, Joonsuk, Park January 2016 (has links)
No description available.
10

The temporal dynamics of switching tasks

Elchlepp, Heike January 2011 (has links)
The topic of this thesis is cognitive control: how the brain organises itself to perform the many tasks it is capable of and how it switches flexibly among them. Task-switching experiments reveal a substantial cost in reaction time and accuracy after a switch in tasks. This "switch cost" is reduced by preparation (suggesting anticipatory task-set reconfiguration), but not eliminated. The thesis focuses on the sources of the "residual" cost. Most accounts attribute it to response selection being prolonged on a task-switch trial by task conflict, e.g. by 'task-set inertia' — persisting activation/inhibition of the previous task's S-R rules — or their associative reactivation by the stimulus. Four experiments used event-related potentials (ERPs) to determine which stages of task processing are influenced by a change in tasks, looking for delays in process-specific markers in the ERP. Experiments 1 and 2 showed that a prepared switch to a reading task from a perceptual judgement delayed early ERP markers of lexical access by a large fraction of the RT switch cost, suggesting that a substantial part of the residual cost arises in processes earlier than response selection, possibly due to task-related attentional inertia. Markers of lexical access observed in the non-lexical task were larger on switch than repeat trials, providing the first electrophysiological evidence of task-set inertia. Experiment 3 examined the effects of an unprepared switch in the same way. ERP waveforms were modulated by a switch before markers of lexical access were evident, suggesting additional processing demands compete for resources with lexical access. A simple delay, however, was not found; post-stimulus task-set reconfiguration does not just insert an extra processing stage. Experiment 4 looked for a delay in the onset of an early ERP marker of emotional processing when the task switched between categorising facial expression and classifying a superimposed letter. No such delay was found in this case, and ERP markers of emotion processing were present to the same extent in the letter task. This suggests that, given appropriate spatial attention, processing facial emotion unfolds automatically, independent of attention allocation to the facial features. Experiments 5-7 further explored the link between conflict due to processing the irrelevant stimulus dimension and the ERP post-stimulus negativity that accompanies the residual cost. The negativity could be elicited even on trials of non-switching blocks by prior training on classifying the irrelevant attribute of the stimulus using the same responses. But this effect did not seem to result from the trained class of irrelevant attribute attracting more attention. Finally, Experiment 8 followed up an incidental observation in Experiment 1 to establish the novel observation that a task-switching context abolishes the usual ERP correlate of withholding a response in a go/no-go paradigm, suggesting an interesting interaction between task-set control and response inhibition.

Page generated in 0.0778 seconds