• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The complex geometry of Teichmüller space

Antonakoudis, Stergios M 06 June 2014 (has links)
We study isometric maps between Teichmüller spaces and bounded symmetric domains in their Kobayashi metric. We prove that every totally geodesic isometry from a disk to Teichmüller space is either holomorphic or anti-holomorphic; in particular, it is a Teichmüller disk. However, we prove that in dimensions two or more there are no holomorphic isometric immersions between Teichmüller spaces and bounded symmetric domains and also prove a similar result for isometric submersions. / Mathematics
2

As coordenadas de Fenchel-Nielsen / Fenchel-Nielsen Coordinate

Turaça, Angélica 09 June 2015 (has links)
Nesta dissertação, definimos a geometria hiperbólica usando o disco de Poincaré (D2) e o semiplano superior (H2) com as respectivas propriedades. Além disso, apresentamos algumas funções e relações importantes da geometria hiperbólica; conceituamos as superfícies de Riemann, analisando suas propriedades e representações; estudamos o espaço de Teichmüller com a devida decomposição em calças. Esses temas são ferramentas necessárias para atingir o objetivo da dissertação: definir as coordenadas de Fenchel Nielsen como um sistema de coordenadas locais do espaço de Teichmüller Tg. / In this dissertation, we defined the hyperbolic geometry using the Poincares disk (D2) and upper half-plane (H2) with its properties. Besides, we presented some functions and important relations of the hyperbolic geometry; we conceptualize the Riemann surfaces, analyzing its properties and representations; we studied the Teichmüller Space with proper decomposition pants. These themes are essential tools to reach the goal of the work: The definition of the Fenchel Nielsen coordenates as local coordinate system of the Teichmüller space Tg.
3

Des coordonnées de décalage sur le super espace de Teichmüller / Shear coordinates on the super Teichmüller space

Bouschbacher, Fabien 25 June 2013 (has links)
Dans cette thèse nous étudions un super-analogue de l'espace de Teichmüller des surfaces à trous. Le but de notre étude est la construction sur cet espace de coordonnées analogues aux coordonnées de décalage de Thurston-Bonahon-Fock-Penner. Ces coordonnées dépendent du choix d'une triangulation idéale de la surface de départ. Nous étudions les changements de coordonnées lorsque l'on change cette triangulation de la surface. Nous démontrons également que cet espace possède une structure de Poisson canonique et que cette structure est indépendante du choix de la triangulation. / In this thesis we study a superanalogue of the Teichmüller space of surfaces with holes.The aim of our study is the construction of coordinates on this space which are analogousto the Thurston-Bonahon-Fock-Penner shear coordinates. These coordinates depend on a choice of an ideal triangulation of the given surface. We study the changes of coordinates when we modify the triangulation by elementary moves. We also show that this spaceadmits a canonical Poisson structure which is independent of the choice of a triangulation.
4

As coordenadas de Fenchel-Nielsen / Fenchel-Nielsen Coordinate

Angélica Turaça 09 June 2015 (has links)
Nesta dissertação, definimos a geometria hiperbólica usando o disco de Poincaré (D2) e o semiplano superior (H2) com as respectivas propriedades. Além disso, apresentamos algumas funções e relações importantes da geometria hiperbólica; conceituamos as superfícies de Riemann, analisando suas propriedades e representações; estudamos o espaço de Teichmüller com a devida decomposição em calças. Esses temas são ferramentas necessárias para atingir o objetivo da dissertação: definir as coordenadas de Fenchel Nielsen como um sistema de coordenadas locais do espaço de Teichmüller Tg. / In this dissertation, we defined the hyperbolic geometry using the Poincares disk (D2) and upper half-plane (H2) with its properties. Besides, we presented some functions and important relations of the hyperbolic geometry; we conceptualize the Riemann surfaces, analyzing its properties and representations; we studied the Teichmüller Space with proper decomposition pants. These themes are essential tools to reach the goal of the work: The definition of the Fenchel Nielsen coordenates as local coordinate system of the Teichmüller space Tg.
5

Elementos da teoria de Teichmüller / Elements of the Teichmüller theory

Vizarreta, Eber Daniel Chuño 23 February 2012 (has links)
Nesta disertação estudamos algumas ferramentas básicas relacionadas aos espaços de Teichmüller. Introduzimos o espaço de Teichmüller de gênero g ≥ 1, denotado por Tg. O objetivo principal é construir as coordenadas de Fenchel-Nielsen ωG : Tg → R3g-3+ × R3g-3 para cada grafo trivalente marcado G. / In this dissertation we study some basic tools related to Teichmüller space. We introduce the Teichmüller space of genus g ≥ 1, denoted by Tg. The main goal is to construct the Fenchel-Nielsen coordinates ωG : Tg → R3g-3+ × R3g-3 to each marked cubic graph G.
6

Géométrie de la longueur extrémale sur les espaces de Teichmüller / Extremal length geometry on Teichmüller spaces

Alberge, Vincent 23 March 2016 (has links)
Dans ce travail nous nous intéressons à la géométrie de l’espace de Teichmüller via la longueur extrémale et à sa relation avec d’autres géométries. En effet, via le théorème d’uniformisation de Poincaré, l’espace de Teichmüller d’une surface orientable de type finie est un espace qui “classifie” aussi bien les structures hyperboliques de cette surface que les structures conformes. Suivant la classification utilisée, on obtient deux compactifications différentes de cet espace, qui sont respectivement la compactification de Thurston et la compactification de Gardiner-Masur. La première étant induite par la longueur hyperbolique et la deuxième par la longueur extrémale. Dans une première partie, on considère les compactifications dites “réduites” de Thurston et Gardiner-Masur. On montre qu’il existe une bijection naturelle entre les deux et que le groupe des auto-homéomorphismes du bord réduit de Thurston est canoniquement isomorphe au groupe modulaire étendu de la surface sous-jacente. Dans une deuxième partie, on étudie la convergence de certaines déformations de structures conformes aussi bien sur le bord de Thurston que sur celui de Gardiner-Masur. Ces déformations, appelées déformations horocycliques, sont un analogue des tremblements de terre de structures hyperboliques. Enfin, dans une troisième et dernière partie, on introduit une compactification à la Gardiner-Masur de l’espace de Teichmüller d’une surface à bord. On généralise des résultats obtenus dans le cas sans bord, et on établit quelques différences. / In this thesis we are interested in the extremal length geometry of Teichmüller space and the links with other geometries. In particular, we work on two different compactifications of Teichmüller space, namely, the Thurston compactification and the Gardiner-Masur compactification. In the first part, we consider the so-called reduced compactifications of Thurston and Gardiner-Masur. We show that there exists a canonical bijection between them and that the group of self-homeomorphisms of the reduced Thurston boundary is canonicaly isomorphic (except for a few cases) to the extended mapping class group of the corresponding surface. In the second part, we study the asymptotic behaviour of some conformal structure deformations to the Thuston boundary and to the Gardiner-Masur boundary. These deformations are called horocyclic deformations and they are analogous to earthquakes of hyperbolic structures. Finally, in the last part, using extremal length we extend the notion of Gardiner-Masur compactification to surfaces with non-empty boundary, and we investigate differences with the case without boundary.
7

Elementos da teoria de Teichmüller / Elements of the Teichmüller theory

Eber Daniel Chuño Vizarreta 23 February 2012 (has links)
Nesta disertação estudamos algumas ferramentas básicas relacionadas aos espaços de Teichmüller. Introduzimos o espaço de Teichmüller de gênero g ≥ 1, denotado por Tg. O objetivo principal é construir as coordenadas de Fenchel-Nielsen ωG : Tg → R3g-3+ × R3g-3 para cada grafo trivalente marcado G. / In this dissertation we study some basic tools related to Teichmüller space. We introduce the Teichmüller space of genus g ≥ 1, denoted by Tg. The main goal is to construct the Fenchel-Nielsen coordinates ωG : Tg → R3g-3+ × R3g-3 to each marked cubic graph G.

Page generated in 0.1402 seconds