• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 136
  • 50
  • 47
  • 34
  • 28
  • 25
  • 24
  • 20
  • 18
  • 18
  • 18
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Haptic teleoperation of mobile manipulator systems using virtual fixtures.

Wrock, Michael 01 November 2011 (has links)
In order to make the task of controlling Mobile-Manipulator Systems (MMS) simpler, a novel command strategy that uses a single joystick is presented to replace the existing paradigm of using multiple joysticks. To improve efficiency and accuracy, virtual fixtures were implemented with the use of a haptic joystick. Instead of modeling the MMS as a single unit with three redundant degrees-of-freedom (DOF), the operator controls either the manipulator or the mobile base, with the command strategy choosing which one to move. The novel command strategy uses three modes of operation to automatically switch control between the manipulator and base. The three modes of operation are called near-target manipulation mode, off-target manipulation mode, and transportation mode. The system enters near-target manipulation mode only when close to a target of interest, and allows the operator to control the manipulator using velocity control. When the operator attempts to move the manipulator out of its workspace limits, the system temporarily enters transportation mode. When the operator moves the manipulator in a direction towards the manipulator’s workspace the system returns to near-target manipulation mode. In off-target manipulation mode, when the operator moves the manipulator to its workspace limits, the system retracts the arm near to the centre of its workspace to enter and remain in transportation mode. While in transportation mode the operator controls the base using velocity control. Two types of virtual fixtures are used, repulsive virtual fixtures and forbidden region virtual fixtures. Repulsive virtual fixtures are present in the form of six virtual walls forming a cube at the manipulator’s workspace limits. When the operator approaches a virtual wall, a repulsive force is felt pushing the operator’s hand away from the workspace limits. The forbidden region virtual fixtures prevent the operator from driving into obstacles by disregarding motion commands that would result in a collision. The command strategy was implemented on the Omnibot MMS and test results show that it was successful in improving simplicity, accuracy, and efficiency when teleoperating a MMS. / UOIT
12

Evaluating a New Display of Information Generated from LiDAR Point Clouds

Barbut, Ori 21 March 2012 (has links)
The design of a texture display for three-dimensional Light Detection and Ranging (LiDAR) point clouds is investigated. The objective is to present a low fidelity display that is simple to compute in real-time, which utilizes the pattern processing capabilities of a human operator to afford an understanding of the environment. The efficacy of the display is experimentally evaluated by in comparison with a baseline point cloud rendering. Subjects were shown data based on virtual hills, and were asked to plan the least-steep traversal, and identify the hill from a set of distractors. The major conclusions are: comprehension of LiDAR point clouds from the sensor origin is difficult without further processing of the data, a separated vantage point improves understanding of the data, and a simple computation to present local point cloud derivative data significantly improves the understanding of the environment, even when observed from the sensor origin.
13

Virtual Holonomic Constraints and the Synchronization of Euler-Lagrange Control Systems

Dame, Jankuloski 20 November 2012 (has links)
A virtual holonomic constraint (VHC) for an Euler-Lagrange Control System is a smooth relation between the configuration variables that can be made invariant through application of suitable feedback. In this thesis we investigate the role played by VHCs in the synchronization of Euler-Lagrange systems. We focus on two problems. For $N$ underactuated cart-pendulums, we design a smooth feedback that fully synchronizes the cart-pendulums while simultaneously stabilizing a periodic orbit corresponding to a desired oscillation for the pendulums. A by-product of our results is the ability to simultaneously synchronize the pendulums and stabilize the unstable upright equilibrium. The second synchronization problem investigated in this thesis is bilateral teleoperation, whereby a master robot is operated by a human while a slave robot synchronizes to the master. For two identical planar manipulators, we develop a methodology to achieve teleoperation in the presence of a hard surface, with simultaneous force control.
14

Evaluating a New Display of Information Generated from LiDAR Point Clouds

Barbut, Ori 21 March 2012 (has links)
The design of a texture display for three-dimensional Light Detection and Ranging (LiDAR) point clouds is investigated. The objective is to present a low fidelity display that is simple to compute in real-time, which utilizes the pattern processing capabilities of a human operator to afford an understanding of the environment. The efficacy of the display is experimentally evaluated by in comparison with a baseline point cloud rendering. Subjects were shown data based on virtual hills, and were asked to plan the least-steep traversal, and identify the hill from a set of distractors. The major conclusions are: comprehension of LiDAR point clouds from the sensor origin is difficult without further processing of the data, a separated vantage point improves understanding of the data, and a simple computation to present local point cloud derivative data significantly improves the understanding of the environment, even when observed from the sensor origin.
15

Virtual Holonomic Constraints and the Synchronization of Euler-Lagrange Control Systems

Dame, Jankuloski 20 November 2012 (has links)
A virtual holonomic constraint (VHC) for an Euler-Lagrange Control System is a smooth relation between the configuration variables that can be made invariant through application of suitable feedback. In this thesis we investigate the role played by VHCs in the synchronization of Euler-Lagrange systems. We focus on two problems. For $N$ underactuated cart-pendulums, we design a smooth feedback that fully synchronizes the cart-pendulums while simultaneously stabilizing a periodic orbit corresponding to a desired oscillation for the pendulums. A by-product of our results is the ability to simultaneously synchronize the pendulums and stabilize the unstable upright equilibrium. The second synchronization problem investigated in this thesis is bilateral teleoperation, whereby a master robot is operated by a human while a slave robot synchronizes to the master. For two identical planar manipulators, we develop a methodology to achieve teleoperation in the presence of a hard surface, with simultaneous force control.
16

Stability, Performance, and Implementation Issues in Bilateral Teleoperation Control and Haptic Simulation Systems

Haddadi, Amir 03 January 2012 (has links)
Master-Slave teleoperation systems are designed to extend a human's manipulation capability to remote tasks. Recent applications of these systems are in robotic therapy, telesurgery, and medical simulators. In practice, due to the uncertainties in the operator and environment dynamics, and time delay, stability and performance are compromised. Stability-based and performance-based controllers are introduced for these systems. A major class of the former controllers are based on the passivity theory and suffer from the assumed unbounded range of dynamics which is rather unrealistic. The latter class of controllers are mostly adaptive methods that are based on performance optimization. The theme of this thesis is on the development of new stability analysis methods, control strategies, and implementation techniques for enhanced trade-off between stability and performance. I have developed a less conservative passivity-based robust stability method and introduced, for the first time, the notion of Bounded Impedance Absolute Stability. The method provides mathematical and visual aids to incorporate bounds of the passive environment impedance for less conservative guaranteed stability conditions, promising a better compromise between stability and performance. I have extended the new method to include the dynamic range of the human operator for increased stability margins. I have also used the new method to develop a bilateral controller robust to time delays. Furthermore, I have investigated the effect of sampling position versus velocity for various sampling models to obtain less conservative coupled stability conditions for haptic simulation systems. Estimates of the environment dynamics are required to include their variations. Therefore, I have proposed two new real-time parameter estimation methods for linear and nonlinear contacts and experimentally evaluated and compared them with the available techniques. Finally, I have introduced needle insertion as a task in telerobotic systems to combine the expertise of the surgeon with robotic control. Here, the very first few steps needed to effectively control the targeting needles have been taken. I have developed a mechanics-based dynamic model for bevel-tip flexible needles inserted into soft tissues. Finite element models are used to estimate soft tissue deformation, while the mechanics-based model is used to predict needle deflections due to bevel-tip asymmetry. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2011-12-23 01:19:47.535
17

Stable bilateral teleoperation with time-varying delays

Yang, Yuan 12 July 2017 (has links)
A teleoperation system is a master-slave robotic system in which the master and slave robots are at different geographical locations and synchronize their motions through the communication channel, with the goal of enabling the human operator to interact with a remote environment. The two primary objectives of bilateral teleoperation systems, position tracking and force feedback, are necessary for providing the user with high fidelity telepresence. However, time delays in communication channels impede the realization of the two objectives and even destabilize the system. To guarantee stability and improve performance, several damping injection-based controllers have been developed in this thesis for two channel and four channel teleoperation systems. For two channel teleoperation, an adaptive bounded state feedback controller has firstly been proposed to address teleoperation with time-varying delays, model uncertainties and bounded actuations. Next, a simplified and augmented globally exponentially convergent velocity observer has been designed and incorporated in the conventional P+d control to obtain stable bilateral teleoperation without using velocity measurements. Then, the more challenging bounded output feedback control problem has been solved by combining the bounded state feedback control and output feedback control two techniques with more conservative control gains. In four channel teleoperation, a hybrid damping and stiffness adjustment strategy has been introduced to tightly constrain the master and slave robots and achieve robust stability. Further, the nonsingular version is developed to conquer the singularity problem in the hybrid strategy, which has been proved to avoid unexpected torque spikes due to the singularity problem at zero velocities. Besides, this thesis has also provided a reduced-order controller to guarantee position coordination for arbitrarily large position errors and maintain the tight coupling between the master and slave sites. After concluding all the research results, future study directions are pointed out at the end of this thesis. / Graduate
18

Teleoperation with significant dynamics

Bratt, Mattias January 2009 (has links)
The subject of this thesis is teleoperation, and especially teleoperation with demanding time constraints due to significant dynamics inherent in the task. A comprehensive background is given, describing many aspects of teleoperation, from history and applications to operator interface hardware and relevant control theory concepts. Then follows a presentation of the research done by the author. Two prototypical highly dynamic teleoperation tasks have been attempted: high speed driving, and ball catching. Systems have been developed for both, employing operator interfaces tailored to facilitate perception of the remote scene and including assistive features to promote successful task completion within the required time frame. Prediction of the state at the remote site as well as of operator action has been applied to address the problem of delays arising when using the Internet as the communication channel. / Detta arbete handlar om teleoperation, som skulle kunna översättas med fjärrstyrning, och speciellt sådan som ställer stränga tidskrav på grund av att uppgiftens natur inbegriper en avsevärd dynamik. Först ges en bred bakgrund där många aspekter av teleoperation belyses, från dess historia och användningsområden till hårdvara för användargränssnitt och relevant reglerteori. Sedan följer en presentation av författarens forskning på området. Två prototypuppgifter har använts, som båda involverar snabba dynamiska förlopp: styrning av en mobil robot i hög hastighet och fångst av kastade bollar i luften. Teleoperationssystem har utvecklats för båda uppgifterna. Användargränssnitt har skräddarsytts för att göra det lättare för operatören att uppfatta vad som händer med och omkring den styrda roboten, och aktiva hjälpmedel har byggts in för att ge större möjligheter att fullgöra uppgiften på tillgänglig tid. Modellering och prediktion av roboten och dess omgivning, men också av operatörens kommandon, har använts för att lösa de fördröjningsproblem som uppstår när internet används som kommunikationsmedium. / Neurobotics
19

Modelling and Control of Cooperative MultiMaster /Multi-Slave Teleoperation Systems

Setoodeh, Peyman 01 1900 (has links)
<p> Cooperative teleoperation combines two traditional areas of robotics, i.e. teleoperation and collaborative manipulation. Cooperative telerobotic systems consist of multiple pairs of master I slave robotic manipulators operating in a shared environment. Due to dynamic interaction among slave manipulators as well as communication latency, control of such systems is particularly challenging and the application of standard teleoperation controller may result in instability. </p> <p> In this thesis a multilateral control framework is proposed for cooperative teleoperation systems that allows for transmission of position and force information between all master and slave robots rather than merely between corresponding units. Two different control approaches are introduced that establish kinematic correspondence among masters and slaves. The operators are presented with a virtual intervening tool in order to collaboratively interact with the environment. Models of operators, master and slave robots, tool, and environment are incorporated in the design. </p> <p> A multilateral adaptive nonlinear control architecture is proposed. Performance and stability of cooperative teleoperation systems are addressed under dynamic interactions between slave robots in the presence of model uncertainty. The robustness of the controller with respect to communication latency is also analyzed. Simulation and experimental studies demonstrate that the proposed approach is highly effective in all phases of a teleoperation task, i.e. in free motion and in contact with both flexible and rigid environments. </p> <p> The second approach involves finite-dimensional state-space models that incorporate the delay for free motion/ soft contact as well as rigid contact modes of operation. Local dynamic linearization control laws are employed to linearize robotic manipulators' dynamics. Model-based discrete-time Linear Quadratic Gaussian (LQG) controllers are proposed that can deliver a stable transparent response for each phase of operation. The robustness of these controllers with respect to parameter uncertainty is examined via the Nyquist analysis. Simulation results demonstrate the effectiveness of the proposed approach. </p> / Thesis / Master of Applied Science (MASc)
20

Modelling and Control of Cooperative Multi-Master/Multi-Slave Teleoperation Systems

Setoodeh, Peyman 01 1900 (has links)
<p> Cooperative teleoperation combines two traditional areas of robotics, i.e. teleoperation and collaborative manipulation. Cooperative telerobotic systems consist of multiple pairs of master I slave robotic manipulators operating in a shared environment. Due to dynamic interaction among slave manipulators as well as communication latency, control of such systems is particularly challenging and the application of standard teleoperation controller may result in instability. </p> <p> In this thesis a multilateral control framework is proposed for cooperative teleoperation systems that allows for transmission of position and force information between all master and slave robots rather than merely between corresponding units. Two different control approaches are introduced that establish kinematic correspondence among masters and slaves. The operators are presented with a virtual intervening tool in order to collaboratively interact with the environment. Models of operators, master and slave robots, tool, and environment are incorporated in the design. </p> <p> A multilateral adaptive nonlinear control architecture is proposed. Performance and stability of cooperative teleoperation systems are addressed under dynamic interactions between slave robots in the presence of model uncertainty. The robustness of the controller with respect to communication latency is also analyzed. </p> <p> Simulation and experimental studies demonstrate that the proposed approach is highly effective in all phases of a teleoperation task, i.e. in free motion and in contact with both flexible and rigid environments. </p> <p> The second approach involves finite-dimensional state-space models that incorporate the delay for free motion/ soft contact as well as rigid contact modes of operation. Local dynamic linearization control laws are employed to linearize robotic manipulators' dynamics. Model-based discrete-time Linear Quadratic Gaussian (LQG) controllers are proposed that can deliver a stable transparent response for each phase of operation. The robustness of these controllers with respect to parameter uncertainty is examined via the Nyquist analysis. Simulation results demonstrate the effectiveness of the proposed approach. </p> / Thesis / Master of Applied Science (MASc)

Page generated in 0.1266 seconds