• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 136
  • 50
  • 47
  • 34
  • 28
  • 25
  • 24
  • 20
  • 18
  • 18
  • 18
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Laser assisted telerobotic control for remote manipulation activities

Khokar, Karan 01 June 2009 (has links)
The effort in this work has been to innovatively use range information from a laser sensor mounted on the end effector of a remote robotic arm in a telerobotic system to assist the user in carrying out remote tasks in unstructured environments. Assistance is provided in the form of Traded Supervisory Control where the human is involved in high level activities such as decision making and the machine generates task plans and executes tasks autonomously using laser data and machine intelligence. In this way human planning and high level decision making capabilities are combined with machine computational and precision task execution capabilities in an optimal way. Laser range data has been used in a novel way to generate trajectories and virtual constraints that assist the user either by executing trajectories autonomously or by guiding the user in teleoperation along specific virtual constraints. The ability of the laser to generate path plans and execute them autonomously, and generate 3D geometry information is another novel feature of the project. This has been achieved without using sophisticated sensory suite and extensive computer processing. The user simply points to certain locations in the unstructured environment by teleoperating the remote arm using the master arm and presses certain keys on the keyboard. The machine using laser data and its intelligence generates the appropriate trajectories, virtual geometric surfaces and path plans which assist the user in executing the task. Time and accuracy results in executing a remote manipulation tasks on a real-time telerobotic system with master and slave arms, with and without laser based assistance have been generated and compared to validate the hypothesis that laser based assistance improves task performance and reduces the cognitive load on the user. To improve dexterity of the arm and to enable smooth and stable control of the arm, singularity avoidance techniques have been implemented and results in simulation have been presented. Accuracy results to validate the motion control algorithms of the robot by comparing trajectories in simulation and on the robot have been generated.
32

Sliding-Mode Control of Pneumatic Actuators for Robots and Telerobots

Hodgson, Sean E Unknown Date
No description available.
33

Towards Supervisory Control for Remote Mobile Manipulation: Designing, Building, and Testing a Mobile Telemanipulation Test-Bed

Hernandez Herdocia, Alejandro Unknown Date
No description available.
34

Consensus in multi-agent systems and bilateral teleoperation with communication constraints

Wu, Jian 01 March 2013 (has links)
With the advancement of communication technology, more and more control processes happen in networked environment. This makes it possible for us to deploy multiple systems in a spatially distributed way such that they could finish certain tasks collaboratively. While it brings about numerous advantages over conventional control, challenges arise in the mean time due to the imperfection of communication. This thesis is aimed to solve some problems in cooperative control involving multiple agents in the presence of communication constraints. Overall, it is comprised of two main parts: Distributed consensus in multi-agent systems and bilateral teleoperation. Chapter 2 to Chapter 4 deal with the consensus problem in multi-agent systems. Our goal is to design appropriate control protocols such that the states of a group of agents will converge to a common value eventually. The robustness of multi-agent systems against various adverse factors in communication is our central concern. Chapter 5 copes with bilateral teleoperation with time delays. The task is to design control laws such that synchronization is reached between the master plant and slave plant. Meanwhile, transparency should be maintained within an acceptable level. Chapter 2 investigates the consensus problem in a multi-agent system with directed communication topology. The time delays are modeled as a Markov chain, thus more characteristics of delays are taken into account. A delay-dependent approach has been proposed to design the Laplacian matrix such that the system is robust against stochastic delays. The consensus problem is converted into stabilization of its equivalent error dynamics, and the mean square stability is employed to characterize its convergence property. One feature of Chapter 2 is redesign of the adjacency matrix, which makes it possible to adjust communication weights dynamically. In Chapter 3, average consensus in single-integrator agents with time-varying delays and random data losses is studied. The interaction topology is assumed to be undirected. The communication constraints lie in two aspects: 1) time-varying delays that are non-uniform and bounded; 2) data losses governed by Bernoulli processes with non-uniform probabilities. By considering the upper bounds of delays and probabilities of packet dropouts, sufficient conditions are developed to guarantee that the multi-agent system will achieve consensus. Chapter 4 is concerned with the consensus problem with double-integrator dynamics and non-uniform sampling. The communication topology is assumed to be fixed and directed. With the adoption of time-varying control gains and the theory on stochastic matrices, we prove that when the graph has a directed spanning tree and the control gains are properly selected, consensus will be reached. Chapter 5 deals with bilateral teleoperation with probabilistic time delays. The delays are from a finite set and each element in the set has a probability of occurrence. After defining the tracking error between the master and slave, the input-to-state stability is used to characterize the system performance. By taking into account the probabilistic information in time delays and using the pole placement technique, the teleoperation system has achieved better position tracking and enhanced transparency. / Graduate
35

Distributed control of multi-robot teleoperation: connectivity preservation and authority dispatch

Yang, Yuan 03 May 2021 (has links)
The frequent occurrences of natural and technological disasters have incurred grave loss of life and damage to property. For mitigating the miserable aftermaths, multi-robot teleoperation systems have been developed and deployed to cooperate with human rescuers in post-earthquake scenarios, and to sample, monitor and clean pollutants in marine environments. With a bidirectional communication channel, human users can deliver commands/requests to guide the motions of the remote robots, and can receive visual/audio feedback to supervise the status of the remote environment, throughout multi-robot teleoperation. Furthermore, the remote robots can send force feedback to human operators to improve their situational awareness and task performance. This way, a closed-loop multi-robot teleoperation system becomes bilateral in which coordinated robots physically interact and exchange energy with human users, and hence needs to be rendered passive for safe human-robot interaction. Beyond guaranteeing closed-loop passivity, the control of a bilateral multi-robot teleoperation system faces two challenging problems: preserving the communication connectivity of the remote robots; and dispatching the teleoperation authority to multiple human users. Because wireless transmission of radio/acoustic signals between the remote robots is constrained by their distances, bilateral multi-robot teleoperation control must coordinate the motions of the remote robots appropriately so as to maintain their communication network connected. Further, multiple human users can send possibly conflicting teleoperation commands to the remote robots, a distributed authority dispatch algorithm is thus needed for the remote robot network to recognize and follow the most urgent user commands at runtime. This thesis develops an energy shaping strategy to preserve the connectivity of the remote robots, and to dispatch control authority over the remote robots to human users, during bilateral multi-robot teleoperation. Chapter 1 introduces the application background of multi-robot teleoperation as well as the state-of-the-art development in related research areas. In Chapter 2, a dynamic interconnection and damping strategy is proposed to reduce and constrain the position error between the local and remote robots to any prescribed bound during bilateral teleoperation. Chapter 3 derives a gradient plus damping control from a bounded potential function and then unifies it into an indirect coupling framework to preserve all communication links of an autonomous multi-robot system with time-varying delays and bounded actuation. On these bases, Chapter 4 develops a dynamic feedforward-feedback passivation strategy to preserve all communication links and thus the connectivity of the tree network of the remote robots while rendering the bilateral multi-robot teleoperation close loop passive. Specifically, by blending the sliding variable in Chapter 2 with the bounded potential function in Chapter 3, the dynamic passivation strategy decomposes the dynamics of the remote robots into a power-preserving interconnection of two subsystems, and regulates the energy behaviour of each subsystem to preserve the tree communication connectivity of the remote robots. To handle time-varying communication delays, the strategy further transforms the communication channels between the local and remote robots into a dynamic controller for passivating bilateral teleoperation. Superior to existing controls, the strategy using a bounded potential function can circumvent numerical instability, reduce noise sensitivity and facilitate future extensions to accommodate robot actuator saturation. On the other side, Chapter 5 designs a distributed and exponentially convergent winners-take-all authority dispatch algorithm that activates the teleoperation of only human users with the most urgent requests in real time. After formulating the problem as a constrained quadratic program, we employ an exact penalty function method to construct a distributed primal-dual dynamical system that can solve the problem at an exponential rate. Because the equilibrium of the system changes with user requests, we then interconnect the dynamical system with physical robot dynamics in a power-preserving way, and passivate closed-loop multi-robot teleoperation using multiple storage functions from a switched system perspective. Finally, Chapter 6 provides some conclusive remarks and two problems regarding connectivity preservation and authority dispatch for future study. / Graduate
36

Teleoperated Grasping Using an Upgraded Haptic-Enabled Human-Like Robotic Hand and a CyberTouch Glove

Zhu, Qi 28 September 2020 (has links)
Grasping, the skill to hold objects and tools while doing in-hand manipulation, still is in many cases an unsolvable problem for robotics, but a natural act for humans. An efficient grasping requires not only human-like robotic hands with articulated fingers but also tactile, force, and kinesthetic sensors for the precise control of the forces and motions exerted during the manipulation. As a fully autonomous robotic dexterous manipulation is too difficult to develop for changing and unstructured environments, an alternative approach is to combine the low-level robot computer control with the higher-level perception and task planning abilities of a human operator equipped with an adequate human-computer interface (HCI). This thesis presents theoretical and experimental contributions to the development of an upgraded haptic-enabled anthropomorphic Ring Ada dexterous robotic hand and a biology-inspired synergistic real-time control system for teleoperated grasping of different objects using a CyberTouch HCI data glove. A fuzzy logic controller module was developed to efficiently control the underactuated Ring Ada’ robotic hand during grasping. A machine learning classification system was developed to recognize grasped objects. Experiments have convincingly demonstrated that our novel Ring Ada robotic hand equipped with kinematic position sensors and touch sensors is able to efficiently grasp different lightweight objects through teleoperation.
37

STUDIES ON BILATERAL CONTROL OF TELEOPERATOR UNDER TIME DELAY / 時間遅れのあるバイラテラル遠隔制御に関する研究

Imaida, Takashi 23 July 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19237号 / 工博第4072号 / 新制||工||1628(附属図書館) / 32236 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 泉田 啓, 教授 藤本 健治, 教授 松野 文俊 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
38

Creating a Data Acquisition Platform for Robot Skill Training

Nahari, Ammar Jamal 01 February 2019 (has links)
No description available.
39

Evaluating the Validity of Latency Effects in Robotics Simulation

Jensen, Leif T 08 December 2017 (has links)
Latency is a common issue found in robotics teleoperation that is not currently addressed in simulation. This study examined the effects of latency on operator performance for a robot teleoperation navigation task. Operators used a Logitech gamepad controller to teleoperate a robot through both a simulated environment and real-world environment. Both environments had the same dimensions and provided a path with obstacles the participant had to navigate. Participants performed this navigation task under three latency conditions, zero, low and high. Completion time, number of collisions, NASA-TLX, System Usability Survey, and User Experience survey were collected and participant performance compared for all latency conditions across the simulated and real-world environments. Results indicated a significant difference in participant performance between the simulated and real-world scenarios.
40

Surface Electromyographic Control of a Humanoid Robot

Grammar, Alex W. January 2012 (has links)
No description available.

Page generated in 0.1268 seconds