• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 24
  • 24
  • 11
  • 6
  • 6
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 223
  • 51
  • 38
  • 30
  • 27
  • 26
  • 26
  • 24
  • 23
  • 20
  • 20
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The effects of replicative senescence and telomerase on contraction and motility of fibroblasts /

Peterson, Joanne Lykins. January 2009 (has links) (PDF)
Thesis (M.S.), Biology--University of Central Oklahoma, 2009. / Includes bibliographical references (leaves 53-57).
52

Nucleoplasmic and cytoplasmic degradation of telomerase implications toward telomerase-based cancer therapy /

Nguyen, Binh Ngoc, January 1900 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2009. / Prepared for: Dept. of Pathology. Title from title-page of electronic thesis. Bibliography: leaves 105-117.
53

Dissection of the telomere complex CST in Arabidopsis thaliana

Leehy, Katherine 16 December 2013 (has links)
Telomeres are the ends of linear chromosomes tasked with preventing their recognition by the DNA damage machinery and providing a mechanism to solve the end replication problem. The telomeric DNA is mostly double-stranded, but it terminates in a 3’ protrusion termed the G-overhang. Telomeres utilize telomerase, a reverse transcriptase, to elongate the telomere, and thus, solve the end replication problem. Both the double strand region and the G-overhang are bound by specific proteins to facilitate the objectives of the telomere. First discovered in budding yeast, the CST (Cdc13(CTC1)/Stn1/Ten1) complex binds to the G-overhang and is important for both chromosome end protection and telomere replication. Work reported in this dissertation provided the first evidence that CST was present outside of yeast, which led to its subsequent identification in a number of vertebrates. Here I present the identification and characterization of the three components of CST in Arabidopsis thaliana. Similar to yeast, Arabidopsis CST is required for telomere length maintenance, for preventing telomere recombination and chromosome end-to-end fusions. Mutations in the CST complex result in severe genomic instability and stem cells defects. My research also shows that CST and telomerase act synergistically to maintain telomere length. Together these data provide evidence for an essential role for CST in maintaining telomere integrity. Unexpectedly, I discovered that the TEN1 component of CST may have a more complex role than other members of the heterotrimer. The majority of telomere-related functions we can assay using molecular and cytological approaches are shared by CTC1, STN1 and TEN1, though TEN1 has additional roles in maintaining genome stability, modulating telomerase activity and possibly non-telomeric functions in the chloroplast. I also present genetic evidence that TEN1 and STN1 act in the same pathway for the maintenance of telomere length and chromosome end protection. Interestingly, however, disrupting the STN1/TEN1 interaction reveals a separation of STN1 function for chromosome end protection versus telomere length maintenance. Finally, I describe the design and creation of a library of STN1 and TEN1 mutants that will be used to further characterize their functions and their interaction partners. By disrupting such interactions, it will be possible to elucidate the functional significance of these interactions, and thus, provide new insight into how CST functions in Arabidopsis.
54

Molecular alterations during immortalisation of human endothelial cells

Wen, Victoria Wei-Yu, Women's & Children's Health, Faculty of Medicine, UNSW January 2009 (has links)
Replicative exhaustion of endothelial cells (ECs) contributes to the pathogenesis of age-related vascular disorders, including atherosclerosis and impaired wound healing. Conversely, abnormal proliferation of ECs underlies the development of EC-derived malignancies, such as haemangioblastoma and angiosarcoma. The central objective of this thesis was to delineate mechanisms that regulate the replicative lifespan of human ECs and molecular alterations that occur during immortalisation of ECs. The gradual shortening of telomeres (chromosome-end structures) is one mechanism that restricts the replicative lifespan of human ECs. Telomere shortening initiates an irreversible growth arrest or senescence through activation of a TP53-mediated DNA damage response. Expression of the cyclin-dependent kinase inhibitor, p16INK4a, is also increased and reinforces senescence via the retinoblastoma pathway. Overexpression of telomerase reverse transcriptase (hTERT) reconstitutes telomerase activity and extends the lifespan of human ECs, but is not sufficient for immortalisation. The current study demonstrated that p16INK4a repression by promoter methylation was a frequent event during immortalisation of hTERT-transduced bone marrow ECs (BMECs), occurring in 5 of 12 clones. Repression of p16INK4a concurred with the development of recurring chromosomal aberrations, which appeared to be a consequence of telomere dysfunction and chromosome fusions. Loss of p16INK4a and the development of a complex karyotype were associated with a more transformed phenotype in hTERT-immortalised BMECs. The investigations described in this thesis were the first to associate loss of p16INK4a expression with the accumulation of chromosome aberrations. Repression of p16INK4a in only a subset of immortal BMECs provided impetus for investigating whether there was a functionally analogous defect in the hTERT-immortalised BMECs that retained p16INK4a expression. In normal human cells, oncogenic Ras upregulates p16INK4a and induces senescence independently of telomere shortening. This thesis demonstrates that the immortal BMECs that retained p16INK4a expression had a defective response to oncogenic Ras, which may have contributed to the immortalisation of these cells. Whole genome and proteome analyses identified additional alterations in gene copy number and protein expression specific to p16INK4a-positive or -negative immortal BMECs. Overall, these investigations provide new insight to the potential consequences of p16INK4a repression during carcinogenesis and describe novel molecular alterations that occur during immortalisation of human ECs.
55

Characterization of distinct and conserved features between ciliate and vertebrate telomerases

Marie-Egyptienne, Delphine. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Anatomy and Cell biology. Title from title page of PDF (viewed 2008/05/09). Includes bibliographical references.
56

Regulation of telomerase by genistein in human prostate cancer cells

Chau, My N. January 2008 (has links)
Thesis (Ph.D.)--Georgetown University, 2008. / Includes bibliographical references.
57

Mapping the RNA-Protein Interface in Telomerase RNP

January 2011 (has links)
abstract: In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the end replication problem. Telomerase is a ribonucleoprotein which extends telomeres through reverse transcriptase activity by reiteratively copying a short intrinsic RNA sequence to generate 3' telomeric extensions. Telomeres protect chromosomes from erosion of coding genes during replication, as well as differentiate native chromosome ends from double stranded breaks. However, controlled erosion of telomeres functions as a naturally occurring molecular clock limiting the replicative capacity of cells. Telomerase is over activated in many cancers, while inactivation leads to multiple lifespan limiting human diseases. In order to further study the interaction between telomerase RNA (TR) and telomerase reverse transcriptase protein (TERT), vertebrate TERT fragments were screened for solubility and purity following bacterial expression. Soluble fragments of medaka TERT including the RNA binding domain (TRBD) were identified. Recombinant medaka TRBD binds specifically to telomerase RNA CR4/CR5 region. Ribonucleotide and amino acid pairs in close proximity within the medaka telomerase RNA-protein complex were identified using photo-activated cross-linking in conjunction with mass spectrometry. The identified cross-linking amino acids were mapped on known crystal structures of TERTs to reveal the RNA interaction interface of TRBD. The identification of this RNA TERT interaction interface furthers the understanding of the telomerase complex at a molecular level and could be used for the targeted interruption of the telomerase complex as a potential cancer treatment. / Dissertation/Thesis / Ph.D. Chemistry 2011
58

Structure, Function and Evolution of Filamentous Fungal Telomerase RNA

January 2011 (has links)
abstract: Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group, filamentous fungi, is presented. Based on phylogenetic analysis of 69 TER sequences and mutagenesis analysis of in vitro reconstituted Neurospora telomerase, we discovered a conserved functional core in filamentous fungal TERs sharing homologous structural features with vertebrate TERs. This core contains the template-pseudoknot and P6/P6.1 domains, essential for enzymatic activity, which retain function in trans. The in vitro reconstituted Neurospora telomerase is highly processive, synthesizing canonical TTAGGG repeats. Similar to Schizosaccharomycetes pombe, filamentous fungal TERs utilize the spliceosomal splicing machinery for 3' processing. Neurospora telomerase, while associating with the Est1 protein in vivo, does not bind homologous Ku or Sm proteins found in both budding and fission yeast telomerase holoenzyme, suggesting a unique biogenesis pathway. The development of Neurospora as a model organism to study telomeres and telomerase may shed light upon the evolution of the canonical TTAGGG telomeric repeat and telomerase processivity within fungal species. / Dissertation/Thesis / Ph.D. Biochemistry 2011
59

Exploring the Regulation of the Telomerase Reaction Cycle through Unique Protein, DNA, and RNA Interactions

January 2014 (has links)
abstract: Telomerase is a unique reverse transcriptase that has evolved specifically to extend the single stranded DNA at the 3' ends of chromosomes. To achieve this, telomerase uses a small section of its integral RNA subunit (TR) to reiteratively copy a short, canonically 6-nt, sequence repeatedly in a processive manner using a complex and currently poorly understood mechanism of template translocation to stop nucleotide addition, regenerate its template, and then synthesize a new repeat. In this study, several novel interactions between the telomerase protein and RNA components along with the DNA substrate are identified and characterized which come together to allow active telomerase repeat addition. First, this study shows that the sequence of the RNA/DNA duplex holds a unique, single nucleotide signal which pauses DNA synthesis at the end of the canonical template sequence. Further characterization of this sequence dependent pause signal reveals that the template sequence alone can produce telomerase products with the characteristic 6-nt pattern, but also works cooperatively with another RNA structural element for proper template boundary definition. Finally, mutational analysis is used on several regions of the protein and RNA components of telomerase to identify crucial determinates of telomerase assembly and processive repeat synthesis. Together, these results shed new light on how telomerase coordinates its complex catalytic cycle. / Dissertation/Thesis / Ph.D. Chemistry 2014
60

Effects of polychlorinated biphenyls (PCBs) on telomere maintenance in hematopoietic stem cells and progenitor cells

Xin, Xing 01 December 2015 (has links)
Polychlorinated biphenyls (PCBs) are synthetic persistent organic compounds that are known to be carcinogenic to humans. Changes in telomerase activity and telomere length are hallmarks of aging and carcinogenesis. Retention of telomerase activity and long telomeres are key characteristics of stem cells and progenitor cells. I hypothesize that PCBs modulate telomerase activity and telomeres of hematopoietic stem cells and progenitor cells via interference of gene regulation and potentially disrupt cell differentiation. To investigate this possibility, I used progenitor-like cells, human promyelocytic leukemia cells (HL-60), and stem cells from rat bone marrow. I show that PCB126 and PCB153 display toxic effects on telomerase activity, telomere length and their related gene expression in progenitor-like HL-60 cells, but they did not exert much effect on differentiation. Further, an in vivo/in vitro study using rat bone marrow cells shows that PCB126-induced hematotoxicity, evidenced by reduction in telomerase activity and TERT gene expression, an increase of the differentiation and a change in the differentiation direction towards granulocytes, which indicate an effect on stem cell function. I also show that the most potent dioxin-like congener, PCB126, regulates hTERT gene expression by activation of the AhR pathway. Both AhR and ARNT work together as a repressor of hTERT transcription. This research improves our understanding of mechanisms of PCB126 and PCB153 toxicity on hematopoietic stem cells and progenitor cells, which will ultimately have significant implications for human health.

Page generated in 0.0409 seconds