• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 8
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 14
  • 12
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of histone gene expression : solution structure determination by NMR of the 3' histone mRNA hairpin and implications for specific protein-RNA recognition

Zanier, Katia January 2002 (has links)
No description available.
2

The involvement of telomerase in malignant and inflammatory disease of the gastrointestinal tract

Usselmann, Bernhard M. January 2001 (has links)
No description available.
3

The YY1 transcription factor is a component of ribonucleoprotein complexes in xenopus laevis oocytes and embryos.

Ficzycz, Andrew Douglas 17 April 2003
Yin Yang 1 (YY1) is a multifunctional transcription factor that is known mainly for its ability to activate or initiate transcription of a wide assortment of genes involved in cellular growth and differentiation. <i>Xenopus laevis </i>oocytes and embryos were used as a model to identify and characterize a potential developmental role for YY1. Northern and Western blots of oocyte and embryonic extracts showed YY1 mRNA and protein is expressed from the earliest stages of oocyte development through to tadpole stages. Examination of the transcriptional activity of YY1 in both oocytes and embryos using reporter gene constructs containing YY1-binding elements demonstrated that YY1 does not act as a repressor or activator of transcription either in oocytes or in embryos. Sub-cellular fractionation of oocytes and Western blot analysis showed YY1 is localized almost exclusively to the cytoplasm of oocytes and in cells of early embryos. Sequence analysis of YY1 revealed that it contains an established RNA binding motif located within the zinc fingers. A series of biochemical assays were performed to address the possibility that YY1 functions as a component of mRNPs in the oocyte cytoplasm. RNA gel mobility shift analyses using in vitro synthesized histone H2A transcripts and supershifts using YY1-specific antibodies suggested that YY1 or YY1-containing complexes in cytoplasmic extracts were able to bind RNA. Chromatographic analysis of oocyte lysates showed YY1 was specifically retained on oligo (dT) cellulose columns. Treatment of the same lysates with RNase abolished binding to oligo (dT), indicating that retention is dependent on the presence of intact polyadenylated RNAs. This suggested that YY1 may be a component of messenger ribonucleoprotein particles (mRNP). Separation of oocyte lysates by size exclusion chromatography (SEC) revealed that YY1 was present in large complexes with an approximate molecular mass of 480 kDa. RNase or phosphatase treatment of oocyte extracts released YY1 from high mass complexes. Analysis of phosphatase or RNase-treated extracts for DNA binding activity showed that monomeric YY1 was able to bind DNA with high affinity. Immunoprecipitation of YY1 complexes followed by cDNA synthesis and sequencing revealed that YY1 is associated with both ribosomal and messenger RNAs in the cytoplasm of the oocyte. These results indicate a novel function for YY1 as a component of messenger ribonucleoprotein particles.
4

The YY1 transcription factor is a component of ribonucleoprotein complexes in xenopus laevis oocytes and embryos.

Ficzycz, Andrew Douglas 17 April 2003 (has links)
Yin Yang 1 (YY1) is a multifunctional transcription factor that is known mainly for its ability to activate or initiate transcription of a wide assortment of genes involved in cellular growth and differentiation. <i>Xenopus laevis </i>oocytes and embryos were used as a model to identify and characterize a potential developmental role for YY1. Northern and Western blots of oocyte and embryonic extracts showed YY1 mRNA and protein is expressed from the earliest stages of oocyte development through to tadpole stages. Examination of the transcriptional activity of YY1 in both oocytes and embryos using reporter gene constructs containing YY1-binding elements demonstrated that YY1 does not act as a repressor or activator of transcription either in oocytes or in embryos. Sub-cellular fractionation of oocytes and Western blot analysis showed YY1 is localized almost exclusively to the cytoplasm of oocytes and in cells of early embryos. Sequence analysis of YY1 revealed that it contains an established RNA binding motif located within the zinc fingers. A series of biochemical assays were performed to address the possibility that YY1 functions as a component of mRNPs in the oocyte cytoplasm. RNA gel mobility shift analyses using in vitro synthesized histone H2A transcripts and supershifts using YY1-specific antibodies suggested that YY1 or YY1-containing complexes in cytoplasmic extracts were able to bind RNA. Chromatographic analysis of oocyte lysates showed YY1 was specifically retained on oligo (dT) cellulose columns. Treatment of the same lysates with RNase abolished binding to oligo (dT), indicating that retention is dependent on the presence of intact polyadenylated RNAs. This suggested that YY1 may be a component of messenger ribonucleoprotein particles (mRNP). Separation of oocyte lysates by size exclusion chromatography (SEC) revealed that YY1 was present in large complexes with an approximate molecular mass of 480 kDa. RNase or phosphatase treatment of oocyte extracts released YY1 from high mass complexes. Analysis of phosphatase or RNase-treated extracts for DNA binding activity showed that monomeric YY1 was able to bind DNA with high affinity. Immunoprecipitation of YY1 complexes followed by cDNA synthesis and sequencing revealed that YY1 is associated with both ribosomal and messenger RNAs in the cytoplasm of the oocyte. These results indicate a novel function for YY1 as a component of messenger ribonucleoprotein particles.
5

Mapping the RNA-Protein Interface in Telomerase RNP

January 2011 (has links)
abstract: In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the end replication problem. Telomerase is a ribonucleoprotein which extends telomeres through reverse transcriptase activity by reiteratively copying a short intrinsic RNA sequence to generate 3' telomeric extensions. Telomeres protect chromosomes from erosion of coding genes during replication, as well as differentiate native chromosome ends from double stranded breaks. However, controlled erosion of telomeres functions as a naturally occurring molecular clock limiting the replicative capacity of cells. Telomerase is over activated in many cancers, while inactivation leads to multiple lifespan limiting human diseases. In order to further study the interaction between telomerase RNA (TR) and telomerase reverse transcriptase protein (TERT), vertebrate TERT fragments were screened for solubility and purity following bacterial expression. Soluble fragments of medaka TERT including the RNA binding domain (TRBD) were identified. Recombinant medaka TRBD binds specifically to telomerase RNA CR4/CR5 region. Ribonucleotide and amino acid pairs in close proximity within the medaka telomerase RNA-protein complex were identified using photo-activated cross-linking in conjunction with mass spectrometry. The identified cross-linking amino acids were mapped on known crystal structures of TERTs to reveal the RNA interaction interface of TRBD. The identification of this RNA TERT interaction interface furthers the understanding of the telomerase complex at a molecular level and could be used for the targeted interruption of the telomerase complex as a potential cancer treatment. / Dissertation/Thesis / Ph.D. Chemistry 2011
6

Exploring the Regulation of the Telomerase Reaction Cycle through Unique Protein, DNA, and RNA Interactions

January 2014 (has links)
abstract: Telomerase is a unique reverse transcriptase that has evolved specifically to extend the single stranded DNA at the 3' ends of chromosomes. To achieve this, telomerase uses a small section of its integral RNA subunit (TR) to reiteratively copy a short, canonically 6-nt, sequence repeatedly in a processive manner using a complex and currently poorly understood mechanism of template translocation to stop nucleotide addition, regenerate its template, and then synthesize a new repeat. In this study, several novel interactions between the telomerase protein and RNA components along with the DNA substrate are identified and characterized which come together to allow active telomerase repeat addition. First, this study shows that the sequence of the RNA/DNA duplex holds a unique, single nucleotide signal which pauses DNA synthesis at the end of the canonical template sequence. Further characterization of this sequence dependent pause signal reveals that the template sequence alone can produce telomerase products with the characteristic 6-nt pattern, but also works cooperatively with another RNA structural element for proper template boundary definition. Finally, mutational analysis is used on several regions of the protein and RNA components of telomerase to identify crucial determinates of telomerase assembly and processive repeat synthesis. Together, these results shed new light on how telomerase coordinates its complex catalytic cycle. / Dissertation/Thesis / Ph.D. Chemistry 2014
7

Strategies to stabilize RNP complexes for structural determination by 3D cryo-electron microscopy

Liu, Wen-ti 30 October 2013 (has links)
No description available.
8

The influenza ribonucleoprotein complex and its impact on viral replication and evolution

Waters, Kaitlyn 30 April 2021 (has links)
The ribonucleoprotein (RNP) complex of influenza A viruses (IAVs) is responsible for replication and transcription of viral RNA and genome, respectively. Mutations in the RNP genes have been identified to play a role in host adaptations and tissue tropisms of IAVs, and compatibility among these genes has been implicated as an important factor for facilitating reassortment of IAVs. Furthermore, mutations and reassortment can drastically impact the polymerase activities of the RNP complex in vitro. However, the simultaneous role both of these mechanisms play in enhancing or diminishing polymerase activities of divergent IAVs remains opaque, and therefore, a greater understanding of how mutations and reassortment of these genes pose potential pandemic risk. In this project, a minigenome assay was used to quantify polymerase activities of various RNP complexes (i.e., complexes containing mutations, reassortant complexes with genes from divergent IAV subtypes; etc.), and applied to a machine learning model to identify genetic features within the RNP complex that are associated with polymerase activities. Applying diverse genotypic and phenotypic data from IAV RNP complexes to a machine learning model has enhanced our understanding of various mechanisms this complex of proteins uses to facilitate viral replication and evolution of IAV.
9

Characterization of Ribonucleoproteins by Cross-linking and Mass Spectrometry

Pourshahian, Soheil 25 August 2008 (has links)
No description available.
10

Analýza funkce chaperonu TSSC4 při formování snRNP částic / Functional analysis of the TSSC4 chaperone during snRNP formation

Vojáčková, Jitka January 2019 (has links)
Splicing is a process, during which non-coding sequences (introns) are cleaved out of pre-mRNA, and exons are ligated. This whole process is catalysed by a multi-megadalton splicing complex, composed of five small nuclear ribonucleoprotein particles (shortly snRNPs), which each contains its own small nuclear RNA molecule and specific set of proteins. During the biogenesis of snRNPs, U4 and U6 snRNPs are assembled to form the di-snRNP, which further associates with U5 snRNP and gives rise to tri-snRNP. With the help of mass spectrometry, we have found previously uncharacterized protein interacting with U5 snRNP, called TSSC4. By immunoprecipitation, I confirmed TSSC4 as a U5 snRNP specific protein and identified the region of TSSC4 responsible for interaction with U5 snRNP. I also showed that TSSC4 interacts with PRPF19, a component of complex driving the catalytic activation of the spliceosome and that this interaction is U5 snRNP-independent. Knockdown of TSSC4 in HeLa cells results in accumulation of di-snRNAs and U5 snRNP in Cajal bodies, nuclear compartments involved in snRNP biogenesis. Similar phenotype was previously observed upon inhibition of tri-snRNP assembly. To analyse the importance of TSSC4 for tri-snRNP assembly, I separated individual snRNPs by glycerol gradient ultracentrifugation...

Page generated in 0.0602 seconds