Spelling suggestions: "subject:"dimensionless"" "subject:"cohesionless""
1 |
Anomaly and Mass Spectrum of Tensionless String in Light-cone Gauge / 光円錐ゲージにおける張力の無い弦のアノマリーと質量スペクトルMurase, Kenta 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18794号 / 理博第4052号 / 新制||理||1583(附属図書館) / 31745 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川合 光, 准教授 福間 將文, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
2 |
Strings, boundary fermions and coincident D-branesWulff, Linus January 2007 (has links)
<p>The appearance in string theory of higher-dimensional objects known as D-branes has been a source of much of the interesting developements in the subject during the past ten years. A very interesting phenomenon occurs when several of these D-branes are made to coincide: The abelian gauge theory living on each brane is enhanced to a non-abelian gauge theory living on the stack of coincident branes. This gives rise to interesting effects like the natural appearance of non-commutative geometry. The theory governing the dynamics of these coincident branes is still poorly understood however and only hints of the underlying structure have been seen.</p><p>This thesis focuses on an attempt to better this understanding by writing down actions for coincident branes using so-called boundary fermions, originating in considerations of open strings, instead of matrices to describe the non-abelian fields. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry, the criterion for being the correct supersymmetric action for coincident D-branes.</p><p>Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, arising as a particular limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.</p>
|
3 |
Strings, boundary fermions and coincident D-branesWulff, Linus January 2007 (has links)
The appearance in string theory of higher-dimensional objects known as D-branes has been a source of much of the interesting developements in the subject during the past ten years. A very interesting phenomenon occurs when several of these D-branes are made to coincide: The abelian gauge theory living on each brane is enhanced to a non-abelian gauge theory living on the stack of coincident branes. This gives rise to interesting effects like the natural appearance of non-commutative geometry. The theory governing the dynamics of these coincident branes is still poorly understood however and only hints of the underlying structure have been seen. This thesis focuses on an attempt to better this understanding by writing down actions for coincident branes using so-called boundary fermions, originating in considerations of open strings, instead of matrices to describe the non-abelian fields. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry, the criterion for being the correct supersymmetric action for coincident D-branes. Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, arising as a particular limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.
|
4 |
An Assessment Of Winkler Model For Simulation Of Shallow Foundation UpliftTaymus, Refik Burak 01 August 2008 (has links) (PDF)
Foundation uplift is the partial separation of a shallow foundation from soil due
to excessive load eccentricity. Foundation uplift can significantly change the
seismic response of slender structures, and frames as well. In literature, different
support models for foundations are employed in order to simulate foundation
uplift in seismic analysis of structures. One of the most widely used models is the
Winkler model which assumes distributed tensionless springs beneath a shallow
foundation. In this study, two simple algorithms are developed in order to
compute static and dynamic response of foundations on tensionless supports. Any
formula given in literature for calculation of foundation impedance coefficients
can be easily introduced in these algorithms. Hence, the use of Winkler model is
critically evaluated through comparisons with the response of a foundation on
elastic halfspace. For that purpose, available impedance formulas given for a
shallow rectangular foundation on elastic halfspace are used. It is concluded that,
the coupling between vertical displacement and rocking of foundation is very
significant during uplift. Therefore, the accuracy of Winkler model in uplift
v
simulation is limited, since the model cannot simulate vertical and rocking
response of a shallow foundation concurrently with a single spring coefficient.
|
5 |
Tensionless Strings and Supersymmetric Sigma Models : Aspects of the Target Space GeometryBredthauer, Andreas January 2006 (has links)
<p>In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models.</p><p>The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence.</p><p>For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kähler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.</p>
|
6 |
Strings as Sigma Models and in the Tensionless LimitPersson, Jonas January 2007 (has links)
<p>This thesis considers two different aspects of string theory, the tensionless limit of the string and supersymmetric sigma models with extended supersymmetry. First, the tensionless limit is used to find a IIB supergravity background generated by a tensionless string. The background has the characteristics of a gravitational shock-wave. Then, the quantization of the tensionless string in a pp-wave background is performed and the result is found to agree with what is obtained by taking a tensionless limit directly in the quantized theory of the tensile string. Hence, in the pp-wave background the tensionless limit commutes with quantization. Next, supersymmetric sigma models and the relation between extended world-sheet supersymmetry and target space geometry is studied. The sigma model with N=(2,2) extended supersymmetry is considered and the requirement on the target space to have a bi-Hermitean geometry is reviewed. The Hamiltonian formulation of the model is constructed and the target space is shown to have generalized Kähler geometry. The equivalence between bi-Hermitean geometry and generalized Kähler follows, in this context, from the equivalence between the Lagrangian- and Hamiltonian formulation of the sigma model. Then, T-duality in the Hamiltonian formulation of the sigma model is studied and the explicit T-duality transformation is constructed. It is shown that the transformation is a symplectomorphism, i.e. a generalization of a canonical transformation. Under certain assumptions, the amount of extended supersymmetry present in the sigma model is shown to be preserved under the T-duality transformation. Next, extended supersymmetry in a first order formulation of the sigma model is studied. By requiring N=(2,2) extended world-sheet supersymmetry an intriguing geometrical structure arises and in a special case generalized complex geometry is found to be contained in the new framework.</p>
|
7 |
Tensionless Strings and Supersymmetric Sigma Models : Aspects of the Target Space GeometryBredthauer, Andreas January 2006 (has links)
In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models. The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence. For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kähler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.
|
8 |
Strings as Sigma Models and in the Tensionless LimitPersson, Jonas January 2007 (has links)
This thesis considers two different aspects of string theory, the tensionless limit of the string and supersymmetric sigma models with extended supersymmetry. First, the tensionless limit is used to find a IIB supergravity background generated by a tensionless string. The background has the characteristics of a gravitational shock-wave. Then, the quantization of the tensionless string in a pp-wave background is performed and the result is found to agree with what is obtained by taking a tensionless limit directly in the quantized theory of the tensile string. Hence, in the pp-wave background the tensionless limit commutes with quantization. Next, supersymmetric sigma models and the relation between extended world-sheet supersymmetry and target space geometry is studied. The sigma model with N=(2,2) extended supersymmetry is considered and the requirement on the target space to have a bi-Hermitean geometry is reviewed. The Hamiltonian formulation of the model is constructed and the target space is shown to have generalized Kähler geometry. The equivalence between bi-Hermitean geometry and generalized Kähler follows, in this context, from the equivalence between the Lagrangian- and Hamiltonian formulation of the sigma model. Then, T-duality in the Hamiltonian formulation of the sigma model is studied and the explicit T-duality transformation is constructed. It is shown that the transformation is a symplectomorphism, i.e. a generalization of a canonical transformation. Under certain assumptions, the amount of extended supersymmetry present in the sigma model is shown to be preserved under the T-duality transformation. Next, extended supersymmetry in a first order formulation of the sigma model is studied. By requiring N=(2,2) extended world-sheet supersymmetry an intriguing geometrical structure arises and in a special case generalized complex geometry is found to be contained in the new framework.
|
9 |
Dualities, Symmetries and Unbroken Phases in String Theory : Probing the Composite Nature of the String / Dualiteter, Symmetrier och Obrutna Faser i Strängteori : En Utforskning av Strängens Sammansatta NaturEngquist, Johan January 2005 (has links)
The thesis treats aspects of string/M-theory in anti-de Sitter spacetimes and their supersymmetric completions. By applying the AdS/CFT correspondence, as well as models of spin chains and singletons, we try to attain a better understanding of the underlying symmetries and the unbroken phases of string/M-theory. Tensionless string/M-theory in anti-de Sitter spacetime is argued to imply a higher spin gauge symmetry enhancement and to be described by gauged sigma models of multi-singletons as well as by closed singleton strings. Vasiliev's weakly projected equations of symmetric massless higher spin gauge fields in the vector oscillator formulation is shown to follow from a deformation of the singleton model. Various four dimensional minimal as well as non-minimal supersymmetric higher spin gauge theories in the spinor formulation are examined. The minimal higher spin gauge theory based on the symmetry algebra hs(1|4) is elaborated on in an N=1 superspace, illustrating the remarkable fact that the choice of base manifold is not fixed in unfolded dynamics. The importance of the representations saturating the unitarity bounds in anti-de Sitter spacetime is stressed throughout the thesis, with particular emphasis on the singleton and the massless representations. Singletons, and hence massless states, are shown to appear as bound states on the string or p-brane and are localized at cusps. Furthermore, we examine semiclassical string solutions in Type IIB String Theory in AdS(5) x S(5) and their boundary duals in N=4 Super Yang-Mills Theory in d=4 which are constituted out of thermodynamic composite operators. By using integrable spin chain techniques and Bäcklund transformations in the field theory and in the string theory, respectively, the one-loop anomalous dimensions as well as the tower of conserved charges of the composite operators are shown to be in agreement with the energies and the tower of conserved charges associated with the dual string states.
|
Page generated in 0.0544 seconds