1 |
Introdução à geometria diferencial das curvas planas / Introduction to differential geometry of plane curvesHolanda, Felipe D'Angelo January 2015 (has links)
HOLANDA, Felipe D’Angelo. Introdução à geometria diferencial das curvas planas. 2015. 64 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2015-09-14T17:46:48Z
No. of bitstreams: 1
2015_dis_fdholanda.pdf: 2177390 bytes, checksum: 53286a68fd72b70cba214a2700429d7c (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-09-15T13:11:15Z (GMT) No. of bitstreams: 1
2015_dis_fdholanda.pdf: 2177390 bytes, checksum: 53286a68fd72b70cba214a2700429d7c (MD5) / Made available in DSpace on 2015-09-15T13:11:15Z (GMT). No. of bitstreams: 1
2015_dis_fdholanda.pdf: 2177390 bytes, checksum: 53286a68fd72b70cba214a2700429d7c (MD5)
Previous issue date: 2015 / The intention of this work is to address in basic form and introductory study of Differential Geometry, which in turn has started his studies with Planas curves. It will require a knowledge of Differential Calculus, Integral and Analytic Geometry for better understanding of this work, because as its name says in Differential Geometry comes from the joint study of geometry involving Calculation. So we discuss sub-themes as smooth curves, tangent vector, arc length through formulas of Frenet, evolutas curves and involute and conclude with some important theorems, as the fundamental theorem of plane curves, Jordan 's theorem and the theorem of four vertices. What basically is, Chapter 1, 4 and 6 of the book Introduction to Plane Curves Hilário Alencar and Walcy Santos. / A intenção desse trabalho será de abordar de forma básica e introdutória o estudo da Geometria Diferencial, que por sua vez tem seus estudos iniciados com as Curvas Planas. Será necessário um conhecimento de Cálculo Diferencial, Integral e Geometria Analítica para melhor compreensão desse trabalho, pois como seu próprio nome nos transparece Geometria Diferencial vem de uma junção do estudo da Geometria envolvendo Cálculo. Assim abordaremos subtemas como curvas suaves, vetor tangente, comprimento de arco passando por fórmulas de Frenet, curvas evolutas e involutas e finalizaremos com alguns teoremas importantes, como o teorema fundamental das curvas planas, teorema de Jordan e o teorema dos quatro vértices. O que, basicamente representa, o capítulo 1, 4 e 6 do livro Introdução às Curvas Planas de Hilário Alencar e Walcy Santos.
|
2 |
Introduction to differential geometry of plane curves / IntroduÃÃo à geometria diferencial das curvas planasFelipe D'Angelo Holanda 24 July 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / A intenÃÃo desse trabalho serà de abordar de forma bÃsica e introdutÃria o estudo da Geometria Diferencial, que por sua vez tem seus estudos iniciados com as Curvas Planas.
Serà necessÃrio um conhecimento de CÃlculo Diferencial, Integral e Geometria AnalÃtica para melhor compreensÃo desse trabalho, pois como seu prÃprio nome nos transparece Geometria
Diferencial vem de uma junÃÃo do estudo da Geometria envolvendo CÃlculo. Assim abordaremos subtemas como curvas suaves, vetor tangente, comprimento de arco passando por fÃrmulas de Frenet, curvas evolutas e involutas e finalizaremos com alguns teoremas importantes, como o teorema fundamental das curvas planas, teorema de Jordan e o teorema dos quatro vÃrtices. O que, basicamente representa, o capÃtulo 1, 4 e 6 do livro IntroduÃÃo Ãs Curvas Planas de HilÃrio Alencar e Walcy Santos. / The intention of this work is to address in basic form and introductory study of Differential Geometry, which in turn has started his studies with Planas curves. It will require a knowledge of Differential Calculus, Integral and Analytic Geometry for better understanding of this work, because as its name says in Differential Geometry comes from the joint study of geometry involving Calculation. So we discuss sub-themes as smooth curves, tangent vector, arc length through formulas of Frenet, evolutas curves and involute and conclude with some important theorems, as the fundamental theorem of plane curves, Jordan 's theorem and the theorem of four vertices. What basically is, Chapter 1, 4 and 6 of the book Introduction to Plane Curves HilÃrio Alencar and Walcy Santos.
|
Page generated in 0.1424 seconds