• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 62
  • 4
  • 1
  • Tagged with
  • 145
  • 113
  • 82
  • 82
  • 82
  • 82
  • 82
  • 48
  • 41
  • 27
  • 13
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Estudo numérico do espectro Raman ressonante anarmônico de moléculas diatômicas / Numerical study of the anharmonic effect in the resonance raman spectrum of diatomic molecules

Costa, Gustavo Juliani 28 March 2017 (has links)
CAPES / Neste estudo, os espectros Raman ressonante das moléculas de H2 e O2 foram computados através da resolução numérica da equação de Schrödinger vibracional utilizando potenciais completamente anarmônicos, obtidos através de métodos ab initio multiconfiguracionais. O problema vibracional foi resolvido através da simulação de Monte Carlo Quântico Variacional Modificado (MCQVM) e do método de Interação de Configurações Vibracional (VCI). As intensidades RR foram calculadas através da teoria independente do tempo do efeito RR. Exceto pela PES do estado eletrônico excitado B3Σ− u da molécula de O2, a qual não pôde ser plenamente descrita devido a um cruzamento evitado entre estados eletrônicos, as demais PESs apresentaram uma boa concordância com os valores experimentais das constantes espectroscópicas (Re, Te, De, Be, We e WeXe). Constatou-se através do desvio teórico-experimental que as energias vibracionais geradas via simulação de MCQVM são, de maneira geral, bastante acuradas para os estados vibracionais de mais baixa energia. Entretanto, à medida que necessitou-se otimizar um número elevado de estados vibracionais de energia superior, necessários para o cálculo da polarizabilidade RR, houve um acréscimo significativo no tempo computacional dos cálculos MCQVM, motivando a adoção do método VCI, no intuito de tentar reduzir o tempo de processamento e também conseguir resultados mais acurados. No que tange ao cálculo da seção de choque RR das moléculas de H2 e O2, constatou-se que a convergência das seções de choque, com relação ao número de estados vibracionais intermediários, é mais rápida quando o potencial de interação é harmônico. A adição da correção vibrônica de Herzberg-Teller (HT) foi bastante pronunciada para as duas moléculas avaliadas, e tendem a atenuar as intensidades das transições RR com relação aos valores obtidos com a aproximação de Franck-Condon. Constatou-se que a meialargura à meia-altura (Γ) do estado vibrônico excitado tem pouca influência sobre a magnitude das seções de choque RR dos sistemas estudados, podendo ser variado em mais de uma ordem de grandeza sem que isso afete substancialmente as intensidades RR. Por fim, verificou-se que a obtenção das intensidades RR por meio de funções de onda vibracionais anarmônicas demanda um número elevado de estados vibracionais intermediários (algumas dezenas) para que haja uma boa convergência nas seções de choque. Esse número é bastante superior ao observado nos cálculos harmônicos. / In this study, the resonance Raman spectra of H2 and O2 molecules were computed by the numerical resolution of the vibrational Schrödinger equation employing fully anharmonic potentials, obtained by Multiconfigurational ab initio methods. The vibrational problem was solved through the Modified Variational Quantum Monte Carlo (MVQMC) simulation and the Vibrational Configurations Interaction (VCI) methods. The time independent framework of the RR effect was used to compute the RR intensities. The Potential Energy Surfaces (PESs) were in good agreement with the experimental values of the spectroscopic constants (Re, Te, De, Be, We e WeXe), except for the excited electronic state B3Σ− u PES of the O2 molecule, which could not be fully described due to an avoided crossing between electronic states. It was verified through the theoretical-experimental deviation values that the vibrational energies generated by MVQMC simulations are, in general, very accurate for the lowest energy vibrational states. However, as it was necessary to optimize higher energy states, required in the calculation of the RR polarizability, the computational time of MVQMC method was greatly increased, motivating the use of VCI method in order to try to reduce processing time and achieve results that are more accurate. Regarding to calculating the RR cross sections of the H2 and O2 molecules, results have showed that the convergence is faster when using the harmonic potential instead of the anharmonic potential. The addition of vibronic coupling effects was quite impactful for both molecular systems evaluated, and tended to attenuate the RR transition intensities relative to the values obtained with the Franck–Condon contribution. It was verified that the bandwidth variation of the excited electronic state (Γ parameter) pose little influence in the RR cross sections of the addressed molecular systems, therefore being able to vary Γ in more than an order of magnitude without substantially affecting the RR intensities. Ultimately, the target property is largely influenced by the number of vibrational wave functions, requiring considerable quantities of intermediate vibrational states (dozens) for a good convergence of the anharmonic RR cross sections, which is a much larger quantity compared to the harmonic calculations.
142

CLASSIFICAÇÃO DE CERVEJAS POR ANÁLISE DE IMAGENS E PCA / Classification of beer by PCA and analysis of image

SILVA, Thiago César de Oliveira 30 June 2008 (has links)
Made available in DSpace on 2014-07-29T15:12:43Z (GMT). No. of bitstreams: 1 Dissertacao Thiago Cesar.pdf: 841884 bytes, checksum: cee2fa330f9f584e1e3feaa6524d8a0e (MD5) Previous issue date: 2008-06-30 / In this work a simple and new approach for lager beer pattern recognition based on image analysis was accomplished using Principal Component Analysis (PCA). Digital color images obtained from a scanner were decomposed into a binary form with the help of Scilab and SIP softwares. The PCA data matrix consisted of RGB color histograms for each sample. 350 mL beer cans were chosen at random on the shelf of local supermarkets in an overall of ninety cans from ten different brands. 200 mL samples were immersed in an ultrasound bath for a period of time ranging from twenty to thirty minutes before the digital image processing. The resulting methodology can be a simple alternative to the analytical quality control of lager beers. / Nesse trabalho foi desenvolvida uma nova metodologia para classificação de cervejas utilizando análise de imagens, tendo como atributo de qualidade a cor, com o emprego da Análise de Componentes Principais (PCA). Para o desenvolvimento do trabalho fez-se uso do software matemático Scilab e do pacote computacional SIP, que possibilitou a decomposição e a análise das imagens digitalizadas obtidas por meio de um scanner comercial. Rotinas foram aplicadas no software para decompor as imagens geradas nos formatos JPEG e BMP, em termos dos canais R, G e B, do padrão de cores RGB. Por meio dos algoritmos desenvolvidos, cada matriz de dados resultante da imagem de uma amostra de cerveja foi transformada em uma nova matriz, a qual gerou o respectivo histograma médio de freqüências das 768 variáveis, cada canal de cor contém 256 (0 a 255) índices de cor. De tal modo, pôde-se analisar as diferentes marcas de cerveja por meio dos gráficos de PCA, com base nos resultados dos gráficos dos loadings e dos scores e dos histogramas médios de freqüência de cada marca. Foram analisadas imagens em formato JPEG de dez marcas de cerveja do tipo pilsen em embalagens de latas contendo 350 mL de cerveja, escolhidas ao acaso, considerando as marcas de maior consumo na região metropolitana de Goiânia. Cerca de 200 mL de cerveja foram retiradas de cada lata e submetidas ao ultra-som para desgaseificação antes da captura da imagens no scanner. Durante as análises de imagens foram percebidas sensíveis alterações de cor das amostras de cerveja quando expostas a luz e ao ar, de modo que esse fenômeno passou a ser avaliado como sendo objetivo secundário do trabalho. Em um segundo momento, com o intuito de ampliar o estudo da análise de imagens, fez-se novas análises com imagens em formato bitmap, BMP, e para tanto foi realizada nova amostragem com o mesmo critério da anterior. Nessa nova amostragem foram escolhidas oito marcas, dentre as quais, sete coincidiram com as marcas utilizadas na análise das imagens com formato em JPEG. Os resultados obtidos nesse trabalho indicam que a metodologia proposta pode ser uma alternativa analítica simples para o controle de qualidade da cerveja, tendo como atributo a cor.
143

Effetti cooperativi in sistemi quantistici: superradianza e interazioni a lungo raggio / COOPERATIVE EFFECTS IN QUANTUM SYSTEMS: SUPERRADIANCE AND LONG-RANGE INTERACTIONS

MATTIOTTI, FRANCESCO 25 February 2021 (has links)
Questa tesi di dottorato studia l’interazione della cooperatività con il rumore in sistemi realistici, focalizzandosi principalmente sulla superradianza. Gli effetti cooperativi emergono dall’interazione collettiva di un insieme di elementi con un campo esterno. Esempi degni di nota sono la superconduttività, dove le coppie di Cooper elettroniche interagiscono con le vibrazioni reticolari, le eccitazioni di plasma, che sorgono dall'interazione collettiva degli elettroni in un metallo con il campo coulombiano, e la superradianza, ovvero quel processo di emissione spontanea cooperativa che sorge da un aggregato di emettitori identici. Gli effetti cooperativi sono tipicamente robusti al disordine e al rumore, cosa che li rende interessanti per delle applicazioni a dispositivi quantistici che possano operare a temperatura ambiente. In questo lavoro, inizialmente, introduciamo un formalismo di “master equations” che descrive l’accoppiamento collettivo di un aggregato di emettitori/assorbitori con il campo elettromagnetico, valido quando le dimensioni dell'aggregato sono sia maggiori che minori della lunghezza d’onda emessa/assorbita. Inoltre, il formalismo è valido per accoppiamento sia debole che forte con il campo elettromagnetico e, cosa più importante, permette di descrivere correttamente la superradianza in diversi regimi. In tale formalismo, studiamo l’interazione tra superradianza e rumore termico sia per nanotubi molecolari (di dimensioni minori della lunghezza d’onda associata alla transizione) che sono presenti nei complessi antenna fotosintetici dei Green Sulfur Bacteria, sia pure per superreticoli di quantum dots di nuova generazione, aventi dimensioni maggiori della lunghezza d’onda emessa. In entrambi i casi si dimostra che la coerenza può permanere in presenza di rumore termico alle temperature a cui questi sistemi sono stati analizzati sperimentalmente (temperatura ambiente per i nanotubi molecolari, e 6 K per i superreticoli di quantum dots). Nello specifico, nei nanotubi molecolari mostriamo che la macroscopica delocalizzazione coerente delle eccitazioni a temperatura ambiente, che copre centinaia di molecole, può essere considerata un effetto emergente che origina dall’effetto combinato della specifica disposizione geometrica delle molecole e della presenza di accoppiamenti tra subunità del cilindro, incrementati dagli effetti cooperativi. Questi risultati aprono la strada a nuovi modi per ingegnerizzare dei “quantum wires” robusti al rumore grazie alla cooperatività. Inoltre, la presente analisi di sistemi allo stato solido basati su superreticoli di “quantum dots” di perovskite (CsPbBr3) fornisce una base teorica in grado di comprendere recenti osservazioni di emissione superradiante. Sulla base della nostra teoria, suggeriamo che futuri esperimenti dove si utilizzino quantum dots più piccoli, potrebbe aumentare significativamente la robustezza del sistema al rumore termico, aprendo la strada verso la superradianza a temperatura ambiente in sistemi allo stato solido. Si considerano anche i complessi antenna dei Purple Bacteria, dove è ben risaputo che gli effetti cooperativi incrementano il trasferimento e l’accumulo di eccitazioni generate dalla luce assorbita. Mostriamo come queste proprietà possono essere sfruttate per creare un laser ispirato a sistemi biologici e basato su aggregati molecolari, dove la luce solare, benché debole, sarebbe utilizzata come sorgente di pompaggio. Il trasferimento efficiente di energia dentro questo sistema, all’atto pratico, focalizzerebbe l’eccitazione assorbita in direzione di un dimero molecolare, composto da una coppia di molecole interagenti, opportunamente scelte. L’orientazione dei momenti di dipolo di transizione in ciascun dimero è tale da concentrare tutta l’intensità del dipolo nel livello a più alta energia, lasciando lo stato eccitonico inferiore otticamente inattivo. Un dimero molecolare in tale configurazione, che è ideale per ottenere inversione di popolazione, è chiamato “H-dimer”. Tale H-dimer, nell’archittettura qui proposta per un laser ispirato a sistemi biologici, è posto al centro di un aggregato molecolare ispirato a sistemi biologici. Gli H-dimers, eccitati dagli aggregati molecolari circostanti, raggiungono inversione di popolazione e, dunque, possono emettere luce laser quando tali aggregati sono posti in una cavità ottica. Convertire l’energia incoerente fornita dal Sole in un fascio laser coerente supererebbe diverse limitazioni pratiche inerenti all’utilzzo della luce solare come sorgente di energia pulita. Per esempio, i fasci laser sono molto efficienti nell’avviare reazioni chimiche che convertono la luce solare in energia chimica. Inoltre, dal momento che i complessi fotosintetici batterici tendono ad operare nella regione spettrale del vicino infrarosso, la nostra proposta si presta in modo naturale a realizzare laser a infrarossi a corta lunghezza d’onda, i cui fasci viaggerebbero per lunghe distanze senza quasi perdere energia, quindi distribuendo in modo efficiente l’energia solare raccolta. Nella ricerca di un meccanismo comune alla cooperatività e alla sua robustezza, abbiamo confrontato il modello delle coppie di Cooper della superconduttività con la superradianza in singola eccitazione, mostrando molte somiglianze tra i due fenomeni: in particolare, i sistemi superradianti presentano una “gap” immaginaria nel piano complesso (ovvero, una segregazione tra i tempi di vita degli autostati del sistema) che, in modo simile alla gap superconduttiva, rende questi sistemi robusti al rumore statico. Più in generale, mostriamo che ogni interazione a lungo raggio tra i costituenti di un sistema induce effetti collettivi, manifestati da delle gap nello spettro eccitonico. Perciò, la nostra analisi successiva considera l’effetto delle interazioni a lungo raggio sul trasporto eccitonico lungo catene disordinate. Dimostriamo che la presenza di uno stato collettivo ben separato dagli altri stati influenza tutto lo spettro del sistema, generando dei regimi molto controintuitivi dove il trasporto è incrementato dal disordine o è indipendente da esso, e tali regimi si estendono su molti ordini di grandezza nell’intensità del disordine. Dimostriamo anche che una catena fortemente accoppiata a un modo del campo elettromagnetico in una cavità ottica è equivalente a una catena con interazione a lungo raggio, mostrandosi dunque molto promettente per esperimenti e applicazioni future. Nello specifico, mostriamo che catene molecolari realistiche, ioni intrappolati realizzati allo stato dell’arte e atomi di Rydberg sono tutti in grado di raggiungere l’intensità di interazione a lungo raggio tale per cui il trasporto sarebbe incrementato dal disordine o indipendente da esso, puntando alla realizzazione di un trasporto di energia senza dissipazione in “quantum wires” disordinati. / This Ph.D. thesis studies the interplay of cooperativity and noise in realistic systems, largely focusing on superradiance. Cooperative effects emerge from the collective interaction of an ensemble of elements to an external field. Notable examples are superconductivity, where the electron Cooper pairs interact with the lattice vibrations, plasmon excitations, arising from the collective interaction of electrons in a metal with the Coulomb field, and superradiance, that is a cooperative spontaneous emission process stemming from an aggregate of identical emitters. Cooperative effects are typically robust to disorder and noise, making them interesting for applications to quantum devices operating at room temperature. In this work, we first present a general master equation formalism that describes the collective coupling of an aggregate of emitters/absorbers to the electromagnetic field, valid both when the size of the aggregate is larger or smaller than the emitted/absorbed wavelength. Also, the formalism is valid both for weak and strong coupling of the emitters to the electromagnetic field and, most importantly, it allows to correctly describe superradiance in different regimes. Within such formalism, the interplay of superradiance and thermal noise is studied both for molecular nanotubes (of size smaller than the transition wavelength) that are present in the antenna complexes of photosynthetic Green Sulfur Bacteria, and also for novel solid state quantum dot superlattices, having size larger than the emitted wavelength. In both cases it is shown that coherence can persist in presence of thermal noise at the temperatures where these systems have been experimentally analyzed (room temperature for molecular nanotubes, and 6 K for quantum dot superlattices). Specifically, in natural molecular nanotubes we show that the macroscopic coherent delocalization of the excitation at room temperature, covering hundreds of molecules, can be considered an emergent effect originating from the combined effect of the specific geometric disposition of the molecules and the presence of cooperatively enhanced couplings between cylinder subunits. These results open the path to new ways of engineering quantum wires robust to noise thanks to cooperativity. Moreover, our analysis of solid state systems based on perovskite (CsPbBr3) quantum dot superlattices provides a theoretical framework able to explain recent observations of superradiant emission. Based on our theory, we suggest that further experiments, using smaller quantum dots, could significantly increase the robustness of the system to thermal noise, paving the way towards room-temperature superradiance in solid-state systems. We also considered the antenna complexes of Purple Bacteria, where cooperative effects are well known to boost the transfer and storage of photo-absorbed excitations. We show how these properties can be exploited to create a bio-inspired molecular aggregate laser medium, where natural sunlight, although weak, would be used as a pumping source. The efficient energy transfer within this system would effectively focus the absorbed excitation on a suitably chosen molecular dimer, composed by a pair of interacting molecules. The orientation of the molecule transition dipole moment in each dimer is such to concentrate all the dipole strength in the highest energy level, leaving the lower excitonic state dark. A molecular dimer in such configuration, which is ideal to achieve population inversion, is called H-dimer. Such an H-dimer in our proposed architecture for a bio-inspired laser medium, is placed at the center of the bio-inspired molecular aggregates. The H-dimers, pumped by the surrounding molecular aggregates, reach population inversion and, therefore, can lase when such aggregates are placed in an optical cavity. Turning the incoherent energy supply provided by the Sun into a coherent laser beam would overcome several of the practical limitations inherent in using sunlight as a source of clean energy. For example, laser beams are highly effective at driving chemical reactions which convert sunlight into chemical energy. Further, since bacterial photosynthetic complexes tend to operate in the near-infrared spectral region, our proposal naturally lends itself for realising short-wavelength infrared lasers which would allow their beams to travel nearly losslessly over large distances, thus efficiently distributing the collected sunlight energy. In search of a common mechanism to cooperativity and its robustness, we have compared the Cooper pair model of superconductivity and single-excitation superradiance, showing many similarities between the two: in particular, superradiant systems present an imaginary gap in the complex plane (that is, a segregation between the lifetimes of the system eigenstates) that, similarly to the superconducting gap, makes these systems robust to static disorder. More in general, we show that any long-range interaction between the constituents of a system generates collective behaviours, manifested by gaps in the excitonic spectrum. Therefore, our further analysis considers the effect of long-range interactions on excitation transport along disordered chains. We show that the presence of a gapped, collective state affects the whole spectrum of the system, generating quite counter-intuitive disorder-enhanced and disorder-independent transport regimes, that extend over many orders of magnitude of the disorder strength. We also prove that a chain strongly coupled to a cavity mode is equivalent to a long-range interacting chain, thus being very promising for future experiments and applications. Specifically, we show that realistic molecular chains, state-of-the-art trapped ions and Rydberg atoms are all able to reach the needed long-range interaction strength that would show disorder-enhanced or disorder-independent transport, aiming to the realization of dissipationless transport of energy in disordered quantum wires.
144

La modellazione di sistemi meccanici, applicazioni per il controllo e la misura = Mechanical System Modelling, Applications for Measurement and Control

Miori, Giordano January 2011 (has links)
The research activity of this thesis deals with the modelling of mechanical systems and two applications are analyzed by means of the same approach to modelling process. The first application is about the wind energy conversion systems. The modelling activity aimed at representing the behaviour of wind turbines operating in turbulent wind in terms of power conversion performances. The characterization of the test site has been thoroughly presented. Firstly, the concepts and the state of the art of both power curve and turbulence have been examined in detail. Secondly, a model based on a steady instantaneous power curve has been developed starting from the Reynolds approach at turbulence and a procedure to estimate the steady power curve from experimental data has been presented. The model proposed has been used on experimental data collected at the Trento test site to small wind turbines. Finally the model has been validated on experimental data through the comparison on energy capture forecasting. The second application presented deals with the measurement of cylinder roundness by means of multi-point method. The purpose of the modelling activity was the representation of the measurement process of cylinders surface through multi sensor measurement systems. The model has been developed considering step by step the architecture of the measurement system. Firstly, the generic cylinder shape and axis has been modelled in a parametric way. Then the irregular motion during the measurement process has been modelled thanks to a few parameters and finally the sensor disposition and theirs error has been implemented in the model. The parametric model obtained has been used to demonstrate the importance of consider the positioning errors of the sensors and the motion of the cylinder in 3D domain. Finally a three point method for radius and motion reconstruction has been implemented in the model and same Monte Carlo simulation has been carried out to demonstrate the effect of 3D disturbances on shape reconstruction.
145

Modelos mecânicos e numéricos para estruturas flexíveis unidimensionais / Mecanical and numerical models to unidimensional flexible structures

Santos, Antônio José Boness dos 02 August 2007 (has links)
Made available in DSpace on 2015-03-04T18:50:51Z (GMT). No. of bitstreams: 1 Tese_Antonio_Boness.pdf: 1734195 bytes, checksum: 60769d0cc4e992347a83d1cf365a0030 (MD5) Previous issue date: 2007-08-02 / Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Apresentamos um modelo matemático geral, baseado na teoria de Cosserat para estruturas flexíveis unidimensionais, em regime de deslocamentos finitos e sujeitas a restrições unilaterais. Ao modelo geral agregamos a hipótese de inextensibilidade e, desprezando os efeitos do cisalhamento e das forças inerciais, formulamos o problema variacionalmente tanto na forma cinemática quanto em Lagrangiano Aumentado. Para esta última formulação, construímos aproximações por elementos finitos de Galerkin e utilizamos um algoritmo do tipo Uzawa para a solução do problema aproximado. Apresentamos estudos numéricos com o intuito de avaliar a formulação, validar o algoritmo de solução e exemplificar possíveis aplicações práticas do modelo. Buscando viabilizar uma análise numérica, realizamos uma linearização consistente do modelo geral apresentado anteriormente, produzindo um modelo em regime de pequenos deslocamentos e deformações, descrito no espaço tridimensional. Para este problema, introduzimos uma aproximação por elementos finitos mistos estabilizados, adicionando à formulação de Galerkin formas residuais de mínimos quadrados provenientes das equações de equilíbrio. Provamos que esta formulação atende às condições suficientes para existência e unicidade de solução, independente da esbeltez da estrutura. Apresentamos estimativas de erro indicando taxas de convergência e resultados numéricos comprovando tais taxas. Apresentamos algumas aplicações dos modelos ao estudo de estabilidade de dutos aquecidos e enterrados, na análise da estabilidade de armaduras de risers e umbilicais e, na área biológica, apontamos as possibilidades de suas utilizações na modelagem de moléculas de ADN.

Page generated in 0.0475 seconds