• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Obrobitelné biokeramiky připravené metodou gelového lití / Machinable bioceramics prepared by gelcasting method

Kolář, Martin January 2013 (has links)
In the diploma thesis, overviews of the existing literature focused on the gelcasting method and based on the findings were prepared aqueous slurries of zirconium oxide for gelcasting method. These suspensions were examined for the influence of the content ceramics powder, type and content of dispersants and volume of initiator on viscosity of aqueous suspensions and process of polymerization. Optimum ceramic suspension had 45 vol.% of ceramic powder which was stabilized by 0,5 weight % of dispersant Dolapix CE 64. Polymerization running at room temperature was initiated by 0,175 weight % of ammonium persufate without accelerator. Microstructure of prepared ceramic blanks and sintered bodies was compared with body prepared by isostatic pressing. For the machining tests were prepared blanks in disc-shaped.
2

Influence of Alkaline Copper Quat (ACQ) Solution Parameters on Copper Complex Distribution and Leaching

Pankras Mettlemary, Sedric 31 August 2011 (has links)
The effects of ACQ solution parameters such as copper to quat ratio, pH and copper to ligand ratio on distribution of copper complexes in solution and insoluble precipitates, and on fixation and leaching of copper in treated wood were evaluated. The distribution of ionic complexes, predicted by equilibrium speciation model (MINTEQA2), was related to laboratory fixation and leaching results at controlled ACQ solution parameters. A decrease in the relative proportion of copper in the ACQ formulation from a copper oxide (CuO) to didecyldimethylammonium carbonate (DDACb) ratio of 2:1 to 1:1 and 1:2 resulted in lower copper retention in the treated samples and substantially decreased the amount of copper leached per unit area. For monoethanolamine (Mea) based ACQ, solution parameters which favour a higher proportion of monovalent cationic complex, which consume one reactive site in wood, and the presence of insoluble carbonate precipitate of copper in wood during preservative treatment resulted in higher leach resistance compared to the neutral copper complex present at higher pH. Ammonia (NH3) based ACQ can fix more copper at high pH as there is no chelated neutral complex as in Mea based ACQ; however divalent copper-NH3 complexes may consume two sites to fix in wood. Addition of NH3 in Mea based ACQ at Cu:Mea:NH3 ratio of 1:4:6 at pH 10.6 significantly reduced copper leaching compared to 1:4:0 (without ammonia) at pH 9 due to increased divalent copper-ammonia complexes and decreased neutral copper amine complex at elevated pH. Ammonia addition with a lower proportion of Mea (1:2.5:4 at pH 10.5-10.7), significantly reduced copper leaching compared to 1:4:0 at pH 9; no reduction was observed for ammonia addition in ACQ with a higher proportion of Mea (1:4:4 at pH 10.45). The lower copper leaching from 1:2.5:4 resulted from the higher amount of divalent copper-NH3 complexes at higher pH without compromising the amount of copper precipitated at lower pH. The higher percent copper leached from tetramethylethylenediamine (Tmed) based ACQ compared to Mea and NH3 based ACQ suggested that highly stable complexes tend to stay in solution and do not result in leach resistant copper in the wood.
3

Influence of Alkaline Copper Quat (ACQ) Solution Parameters on Copper Complex Distribution and Leaching

Pankras Mettlemary, Sedric 31 August 2011 (has links)
The effects of ACQ solution parameters such as copper to quat ratio, pH and copper to ligand ratio on distribution of copper complexes in solution and insoluble precipitates, and on fixation and leaching of copper in treated wood were evaluated. The distribution of ionic complexes, predicted by equilibrium speciation model (MINTEQA2), was related to laboratory fixation and leaching results at controlled ACQ solution parameters. A decrease in the relative proportion of copper in the ACQ formulation from a copper oxide (CuO) to didecyldimethylammonium carbonate (DDACb) ratio of 2:1 to 1:1 and 1:2 resulted in lower copper retention in the treated samples and substantially decreased the amount of copper leached per unit area. For monoethanolamine (Mea) based ACQ, solution parameters which favour a higher proportion of monovalent cationic complex, which consume one reactive site in wood, and the presence of insoluble carbonate precipitate of copper in wood during preservative treatment resulted in higher leach resistance compared to the neutral copper complex present at higher pH. Ammonia (NH3) based ACQ can fix more copper at high pH as there is no chelated neutral complex as in Mea based ACQ; however divalent copper-NH3 complexes may consume two sites to fix in wood. Addition of NH3 in Mea based ACQ at Cu:Mea:NH3 ratio of 1:4:6 at pH 10.6 significantly reduced copper leaching compared to 1:4:0 (without ammonia) at pH 9 due to increased divalent copper-ammonia complexes and decreased neutral copper amine complex at elevated pH. Ammonia addition with a lower proportion of Mea (1:2.5:4 at pH 10.5-10.7), significantly reduced copper leaching compared to 1:4:0 at pH 9; no reduction was observed for ammonia addition in ACQ with a higher proportion of Mea (1:4:4 at pH 10.45). The lower copper leaching from 1:2.5:4 resulted from the higher amount of divalent copper-NH3 complexes at higher pH without compromising the amount of copper precipitated at lower pH. The higher percent copper leached from tetramethylethylenediamine (Tmed) based ACQ compared to Mea and NH3 based ACQ suggested that highly stable complexes tend to stay in solution and do not result in leach resistant copper in the wood.
4

Synthesis of Novel Extremely Sterically Hindered Tertiary Alkylamines

Shoker, Tharallah A. 18 April 2018 (has links)
Three advanced methodologies for the preparation of extremely sterically hindered tertiary alkyl amines have been developed. The syntheses of 28 novel tertiary alkylamines that accommodate unusual steric hindrance are detailed. The electrophilic amination of alkyl Grignard reagents with N-chlorodialkylamines, in the presence of N,N,N′,N′-tetramethylethylenediamine (TMEDA) as a key additive, gives a variety of unprecedentedly sterically hindered tertiary alkylamines in good yields. Alternative strategy to 1-adamantyl-substituted (1-Ad) sterically hindered tertiary amines, which involved instead an SN1 reaction between 1-Ad cation with various secondary amines, is described. A complementary strategy to 1-Ad-based sterically hindered tertiary amines, which involves an iminium salt intermediate, is also reported. Salient features of the three protocols that are detailed here include unusual tolerance of steric hindrance, mild reaction conditions employed, ease of product isolation-purification, and absence of catalysts/transition metals. The molecular structures of two faithful examples of extremely sterically hindered tertiary alkylamines were determined by single crystal X-ray diffraction, and the height “h” of nitrogen pyramid of these compounds were measured. The NMR spectra show a restriction in rotation at room temperature among many hindered tertiary amines, and some of them exhibit two complete sets of peaks for two non-equivalent rotamers at room temperature. 15N NMR has been applied to study the structural changes in highly sterically hindered tertiary amines. Most of these compounds have been shown to undergo Hofmann type elimination reaction upon thermolysis at 100 degree in inert solvents, like toluene. / In der vorliegenden Arbeit wurden drei Methoden zur Synthese von tertitären Aminen mit extremer sterischer Hinderung entwickelt und zur Synthese von 28 neuen tertiären Alkylaminen mit entsprechender sterischer Hinderung angewendet. Die elektrophile Aminierung von Grignard-Reagenzien mit N-Chlordialkylaminen, unter Zusatz von N,N,N′,N′-Tetramethylethylendiamin (TMEDA) als Schlüsselkomponente, ermöglicht einen einfachen Zugang zu einer Vielzahl von tertiären Aminen mit extremer sterischer Hinderung mit guten Ausbeuten. Eine alternative Synthesestrategie unter SN1-Bedingungen führt zu sterisch-gehinderten 1-Adamantyl-substituierten (1-Ad) tertiären Aminen durch die Reaktion eines 1-Ad-Kations mit unterschiedlichen sterisch-gehinderten sekundären Aminen. Angelehnt an die zuvor beschriebene Reaktion können auch sterisch gehinderte Imine über eine Iminium-Salz-Zwischenstufe zu sterisch-gehinderten 1-Ad-substituierten tertiären Aminen umgesetzt werden. Auch in diesen Fall zeichnet sich die Reaktion durch eine bemerkenswerte Toleranz gegenüber sterischer Hinderung, milden Reaktionsbedingungen, leichte Produktisolierbarkeit und die Abwesenheit von Übergangsmetallkatalysatoren aus. Die molekulare Struktur zweier repräsentativer tertiärer Alkylamine mit extremer sterischer Hinderung wurde mittels Röntgeneinkristallstrukturanalyse untersucht und die Höhe “h” ihrer Stickstoff-Pyramide bestimmt. Die NMR-Spektren zeigen bei RT eine Einschränkung der freien Rotation um die N-C-Bindungsachse, teilweise führt dies zu vollständig getrennten Signalsätzen für die einzelnen Rotamere. 15N-NMR-Spektroskopie wurde ebenfalls zur Untersuchung von Strukturveränderungen genutzt. In inerten Lösungsmitteln, wie Toluol, zeigen die Verbindungen bei 100 °C in den meisten Fällen eine Hofmann-Eliminierung.

Page generated in 0.0741 seconds