• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adsorption of Alkaline Copper Quat Components in Wood-mechanisms and Influencing Factors

Lee, Myung Jae 31 August 2011 (has links)
Mechanisms of adsorption of alkaline copper quat (ACQ) components in wood were investigated with emphasis on: copper chemisorption, copper physisorption, and quat adsorption. Various factors were investigated that could affect the adsorption of individual ACQ components in red pine wood. Copper chemisorption in wood was affected by ligand types coordinating with Cu and the stability of the Cu-ligand complexes in solution. For Cu-monoethanolamine (Cu-Mea) system, the prevailing active solvent species at the solution pH, [Cu(Mea)2-H]+ complexes with wood acid sites and loses one Mea molecule through a ligand exchange reaction. The amount of adsorbed Cu was closely related to the cation exchange capacity of wood. An increase in Mea/Cu ratio increased the proportion of the uncharged Cu-Mea complex and resulted in decreased Cu chemisorption in wood. Copper precipitation is also an important Cu fixation mechanisms of Cu-amine treated wood. X-ray diffraction analysis revealed that in vitro precipitated Cu was a mixture of copper carbonates (azurite and malachite) and possibly Cu2O. Higher concentration Cu-amine solutions retarded the Cu precipitation to a lower pH because of higher free amine in the preservative-wood system. The changes in zeta potential of wood in relationship to the quaternary ammonium (alkyldimethylbenzylammonium chloride: ADBAC) adsorption isotherm showed two different adsorption mechanisms for quat in wood: ion exchange reaction at low concentration and additional aggregation form of adsorption by hydrophobic interaction at high concentration. Because of the aggregation effect, when wood was treated with ACQ, high amounts of ADBAC were concentrated near the surface creating a steep gradient with depth. This aggregated ADBAC was easily leached out while the ion exchanged ADBAC had high leaching resistance. Free Mea and Cu of ACQ components appeared to compete with ADBAC for the same bonding sites in wood.
2

Influence of Alkaline Copper Quat (ACQ) Solution Parameters on Copper Complex Distribution and Leaching

Pankras Mettlemary, Sedric 31 August 2011 (has links)
The effects of ACQ solution parameters such as copper to quat ratio, pH and copper to ligand ratio on distribution of copper complexes in solution and insoluble precipitates, and on fixation and leaching of copper in treated wood were evaluated. The distribution of ionic complexes, predicted by equilibrium speciation model (MINTEQA2), was related to laboratory fixation and leaching results at controlled ACQ solution parameters. A decrease in the relative proportion of copper in the ACQ formulation from a copper oxide (CuO) to didecyldimethylammonium carbonate (DDACb) ratio of 2:1 to 1:1 and 1:2 resulted in lower copper retention in the treated samples and substantially decreased the amount of copper leached per unit area. For monoethanolamine (Mea) based ACQ, solution parameters which favour a higher proportion of monovalent cationic complex, which consume one reactive site in wood, and the presence of insoluble carbonate precipitate of copper in wood during preservative treatment resulted in higher leach resistance compared to the neutral copper complex present at higher pH. Ammonia (NH3) based ACQ can fix more copper at high pH as there is no chelated neutral complex as in Mea based ACQ; however divalent copper-NH3 complexes may consume two sites to fix in wood. Addition of NH3 in Mea based ACQ at Cu:Mea:NH3 ratio of 1:4:6 at pH 10.6 significantly reduced copper leaching compared to 1:4:0 (without ammonia) at pH 9 due to increased divalent copper-ammonia complexes and decreased neutral copper amine complex at elevated pH. Ammonia addition with a lower proportion of Mea (1:2.5:4 at pH 10.5-10.7), significantly reduced copper leaching compared to 1:4:0 at pH 9; no reduction was observed for ammonia addition in ACQ with a higher proportion of Mea (1:4:4 at pH 10.45). The lower copper leaching from 1:2.5:4 resulted from the higher amount of divalent copper-NH3 complexes at higher pH without compromising the amount of copper precipitated at lower pH. The higher percent copper leached from tetramethylethylenediamine (Tmed) based ACQ compared to Mea and NH3 based ACQ suggested that highly stable complexes tend to stay in solution and do not result in leach resistant copper in the wood.
3

Adsorption of Alkaline Copper Quat Components in Wood-mechanisms and Influencing Factors

Lee, Myung Jae 31 August 2011 (has links)
Mechanisms of adsorption of alkaline copper quat (ACQ) components in wood were investigated with emphasis on: copper chemisorption, copper physisorption, and quat adsorption. Various factors were investigated that could affect the adsorption of individual ACQ components in red pine wood. Copper chemisorption in wood was affected by ligand types coordinating with Cu and the stability of the Cu-ligand complexes in solution. For Cu-monoethanolamine (Cu-Mea) system, the prevailing active solvent species at the solution pH, [Cu(Mea)2-H]+ complexes with wood acid sites and loses one Mea molecule through a ligand exchange reaction. The amount of adsorbed Cu was closely related to the cation exchange capacity of wood. An increase in Mea/Cu ratio increased the proportion of the uncharged Cu-Mea complex and resulted in decreased Cu chemisorption in wood. Copper precipitation is also an important Cu fixation mechanisms of Cu-amine treated wood. X-ray diffraction analysis revealed that in vitro precipitated Cu was a mixture of copper carbonates (azurite and malachite) and possibly Cu2O. Higher concentration Cu-amine solutions retarded the Cu precipitation to a lower pH because of higher free amine in the preservative-wood system. The changes in zeta potential of wood in relationship to the quaternary ammonium (alkyldimethylbenzylammonium chloride: ADBAC) adsorption isotherm showed two different adsorption mechanisms for quat in wood: ion exchange reaction at low concentration and additional aggregation form of adsorption by hydrophobic interaction at high concentration. Because of the aggregation effect, when wood was treated with ACQ, high amounts of ADBAC were concentrated near the surface creating a steep gradient with depth. This aggregated ADBAC was easily leached out while the ion exchanged ADBAC had high leaching resistance. Free Mea and Cu of ACQ components appeared to compete with ADBAC for the same bonding sites in wood.
4

Influence of Alkaline Copper Quat (ACQ) Solution Parameters on Copper Complex Distribution and Leaching

Pankras Mettlemary, Sedric 31 August 2011 (has links)
The effects of ACQ solution parameters such as copper to quat ratio, pH and copper to ligand ratio on distribution of copper complexes in solution and insoluble precipitates, and on fixation and leaching of copper in treated wood were evaluated. The distribution of ionic complexes, predicted by equilibrium speciation model (MINTEQA2), was related to laboratory fixation and leaching results at controlled ACQ solution parameters. A decrease in the relative proportion of copper in the ACQ formulation from a copper oxide (CuO) to didecyldimethylammonium carbonate (DDACb) ratio of 2:1 to 1:1 and 1:2 resulted in lower copper retention in the treated samples and substantially decreased the amount of copper leached per unit area. For monoethanolamine (Mea) based ACQ, solution parameters which favour a higher proportion of monovalent cationic complex, which consume one reactive site in wood, and the presence of insoluble carbonate precipitate of copper in wood during preservative treatment resulted in higher leach resistance compared to the neutral copper complex present at higher pH. Ammonia (NH3) based ACQ can fix more copper at high pH as there is no chelated neutral complex as in Mea based ACQ; however divalent copper-NH3 complexes may consume two sites to fix in wood. Addition of NH3 in Mea based ACQ at Cu:Mea:NH3 ratio of 1:4:6 at pH 10.6 significantly reduced copper leaching compared to 1:4:0 (without ammonia) at pH 9 due to increased divalent copper-ammonia complexes and decreased neutral copper amine complex at elevated pH. Ammonia addition with a lower proportion of Mea (1:2.5:4 at pH 10.5-10.7), significantly reduced copper leaching compared to 1:4:0 at pH 9; no reduction was observed for ammonia addition in ACQ with a higher proportion of Mea (1:4:4 at pH 10.45). The lower copper leaching from 1:2.5:4 resulted from the higher amount of divalent copper-NH3 complexes at higher pH without compromising the amount of copper precipitated at lower pH. The higher percent copper leached from tetramethylethylenediamine (Tmed) based ACQ compared to Mea and NH3 based ACQ suggested that highly stable complexes tend to stay in solution and do not result in leach resistant copper in the wood.

Page generated in 0.0899 seconds