41 |
Lignin for bioenergy & biomaterialsWells, Tyrone 08 June 2015 (has links)
Sustainable waste treatment and lignin development strategies targeted for biorefineries will benefit industry, consumers, and the environment. This dissertation demonstrates the feasibility of a novel biochemical pathway capable of converting sugars and lignin sourced from biorefinery waste streams into microbial oils suitable for biodiesel, cosmetic, and biopharmaceutical applications. This biochemical pathway also presents interesting avenues for the commercial production of higher-value intermediate metabolites such as catechol, protocatechuate, pyruvate, and succinate. Alternatively, this dissertation also demonstrates a unique polymerization strategy for lignin that can be adopted towards the production of green polymeric biomaterials. Overall, these strategies jointly present intriguing routes for lignin valorization.
|
42 |
Transkriptionelle Regulation des pflanzlichen Detoxifikationsprogramms durch das GRAS-Protein SCL14 / Transcriptional regulation of the plant detoxification program by the GRAS-protein SCL14Meier, Alexander 20 October 2014 (has links)
No description available.
|
43 |
Les mélanges polyamides et lignine, une alternative renouvelable pour la réalisation de nouvelles fibres organiques et de précurseurs pour fibres de carbone / Blends of lignin and polyamides, a renewable alternative for new organic fibers and carbon fiber precursorsFournier, Teddy 15 December 2017 (has links)
La fibre de carbone (FC) est un matériau incontournable de l’industrie composite haute performance. Elaborée dans sa grande majorité à partir d’un précurseur couteux et d’origine fossile, le Polyacrylonitrile (PAN), elle est principalement utilisée dans des secteurs à forte valeur ajoutée. Des précurseurs bio-sourcés et peu couteux alternatifs sont envisagés afin de s’affranchir du PAN pour l réduction de poids dans l’industrie automobile. La lignine, depuis longtemps identifiée parmi les précurseurs d’origine renouvelable bon marché, est aujourd’hui disponible en quantité et qualité industrielles. Cependant, sa variabilité et sa complexité moléculaire, nécessitent bien souvent la réalisation de précurseurs hybrides. L’association avec d’autres polymères permet de garder les avantages de chacun des constituants (cout, mise en oeuvre, propriétés mécaniques…). Les travaux présentés dans ce manuscrit, découlent de ce constat et s’orientent sur l’utilisation d’alliage lignine et de thermoplastiques polyamides. Différents types de polyamides (PA11, PA12, PEBA) sont étudiés en mélange par voie fondu avec une lignine de feuillu extraite via le procédé organosolv. Les matériaux sont caractérisés par analyses calorimétriques, thermogravimétriques, rhéologiques et mécaniques. Il est montré que le caractère hydrophile du copobloc PEBA conduit à une miscibilité totale de la lignine permettant d’intégrer une forte part de matière d’origine renouvelable. Le PA 11, bien que non miscible, présente néanmoins une forte affinité avec les molécules de lignines. Ces mélanges conduisent à des alliages aux propriétés mécaniques comparables à celles de la matrice polymère tout en contenant une forte composante renouvelable. De plus, la carbonisation de ces matériaux conduit à la formation de fibre de carbone aux propriétés modestes mais comparables avec les FC exLignine existantes. / Carbon fibers (CF) are the essential reinforcing material in high performance composite industry. They are generally produced from polyacrylonitrile (PAN), a costly precursor from fossil origin, and are mainly used in high added-value sectors. Alternative bio-sourced and low-cost precursors are being considered in order to get rid of the PAN for weight reduction in automotive industry. Lignin, which has long been identified among the precursors of cheap renewable origin, is now available in industrial quantities and qualities. However, its variability and molecular complexity often require the production of hybrid precursors. Combination with other polymers makes it possible to retain the advantages of each of the constituents (cost, processability, mechanical properties, etc.). The work presented in this manuscript, stems from this observation and focusses on the use of blends of lignin and thermoplastic polyamides. Different types of polyamides (PA11, PA12, PEBA) are studied in a molten mixtures with a hardwood lignin extracted via the organosolv process. The materials are characterized by calorimetric, thermogravimetric, rheological and mechanical analyzes. It is shown that the hydrophilicity of the block copolymer PEBA leads to a total miscibility of the lignin; making it possible the integration of a high proportion of material from renewable sources. PA 11, although immiscible, has a high affinity with lignin molecules. These mixtures lead to blends with mechanical properties comparable to that of the neat polymer while containing a strong amount of renewable components. Moreover, the carbonization of these materials leads to the formation of carbon fibers, with modest properties but still comparable with the existing lignin based CFs.
|
44 |
TGA-FTIR study of the vapours released by volatile corrosion inhibitor model systemsNhlapo, N.S. (Nontete Suzan) January 2013 (has links)
Proprietary mixtures of amines and carboxylic acids are used as volatile corrosion inhibitors
(VCIs) for the protection of steel and iron components against atmospheric corrosion during
storage and transportation. Interactions between amines and carboxylic acids have been
comprehensively reported in the literature. However, little is known about the nature of the
vapours these mixtures emit. The present study focused on the development of the evolved
gas analysis method which will help in the characterisation of the vapours released by VCIs.
In the method, the evaporation of various amine-carboxylic acid binary mixtures was
monitored by thermogravimetric analysis (TGA). The nature and the composition of the
released vapours was followed by Fourier transform infrared (FTIR) spectroscopy. Mixtures
consisting of triethylamine (TEA) and acetic acid were studied as a model compound using
TGA-FTIR at 50 °C to validate the TGA-FTIR method. As vaporisation progressed, the
composition of the remaining liquid and the emitted vapour converged to a fixed amine
content of ca. 27 mol %. This is just above the composition expected for the 1:3 amine:
carboxylic acid complex. Mixtures close to this composition also featured the lowest
volatility. TGA-FTIR proved to be a convenient method for studying the evaporation of
TEA-acetic acid mixtures, and the nature and composition of the released vapours.
Amine addition leads to the dissociation of carboxylic acid dimers in favour salt formation.
The formation of an ion pair between the amine and carboxylic acid was confirmed by the FTIR spectra of the liquid phase. The resulting amine-carboxylic acid mixtures showed a
slow mass loss rate on TGA when compared with the pure amines and pure carboxylic acids.
This indicated that the mixtures have low volatility, hence low vapour pressure compared
with the pure components. The low vapour pressure of the mixtures was confirmed by the
calculated gas permeability values. These values were much higher for the pure amines and
the pure carboxylic acids. However, they dropped significantly on amine addition. The strong
amine-carboxylic acid interaction is responsible for the suppressed volatility of the mixtures.
No interaction is observed between amine and carboxylic acid molecules in the vapour phase
at 230 °C.
The method developed was applied to characterise the model compounds simulating the
amine-carboxylic acid-based volatile corrosion inhibitors. These model systems contained the
primary, secondary and tertiary amines (hexylamine, morpholine and triethylamine), as well
as carboxylic acids with different chain lengths (acetic, propanoic, hexanoic and octanoic).
These systems are usually employed as equimolar mixtures to protect ferrous metals against
atmospheric corrosion. The key finding of the study was that the vapours released by such
equimolar mixtures initially contain almost exclusively free amine. After prolonged
vaporisation, a steady-state “azeotrope”-like composition is approached. It contains excess
acid and features impaired corrosion-inhibition efficiencies according to the Skinner test. In
part, this behaviour can be attributed to the mismatch between the volatilities of the amine
and carboxylic acid constituents. / Thesis (PhD)--University of Pretoria, 2013. / gm2013 / Chemical Engineering / unrestricted
|
45 |
Séparation des isomères de l’hexane par des solides hybrides poreux (MOFs) / Separation of Hexane Isomers in Metal-Organic Frameworks (MOFs)Pinto Mendes, Patricia Alexandra 09 September 2014 (has links)
Le principal objectif de cette recherche est l’évaluation de nouveaux adsorbants nommés Metal-Organic Frameworks (MOFs) pour la séparation des isomères de l'hexane afin d'améliorer l'indice d'octane de l’essence. La séparation des isomères de l'hexane est actuellement réalisée par Total Isomerization Processes (TIP) basé sur l’utilisation de la zéolithe 5A qui permet d’isoler les paraffines «non normales». Afin d'améliorer et de tester d’autres adsorbants, des structures MOFs flexibles et rigides ont été synthétisées et évaluées pour cette séparation au travers de séries de courbes de perçage avec des mélanges d’isomères de l’hexane nHEX, 3MP, 22DMB et 23DMB. Cela a permis d'obtenir des isothermes d'adsorption à l'équilibre et une analyse de leurs performances a permis de trouver les structures plus performantes. L’UiO-66(Zr) fonctionnalisé par des groupes –Br, –NO2, et –NH2, les solides mésoporeux MIL-100(Cr) et son analogue fonctionnalisé MIL-100(Cr) greffé avec des alkylamines, le solide microporeux MIL-125(Ti) fonctionnalisé avec un groupe –NH2 et le tétracarboxylate de fer(III) microporeux MIL-127(Fe) sont les solides rigides étudiés. Les structures flexibles sont les dicarboxylates de fer(III) MIL-53(Fe) fonctionnalisés –(CF3)2, –2CH3, le ZIF-8 à base d’imidazolate et un polymorphe MIL-88B(Fe) fonctionnalisé –2CF3. La caractérisation de ces adsorbants cristallins a été réalisée par combinaison de diffraction des rayons X (XRPD), spectroscopie infrarouge (IR), analyse thermogravimétrique (TGA) et la porosimétrie d’adsorption d’azote. Les solides MIL-53(Fe)–(CF3)2 et ZIF-8 démontrent un effect de tamis moléculaires avec un comportement remarquable. / The main goals of this research are the synthesis of new specific adsorbents named Metal-Organic Frameworks (MOFs) for the separation of hexane isomers in order to improve the octane number of the gasoline. The separation of hexane isomers is actually performed using the conventional Total Isomerization Processes (TIP) with zeolite 5A which isolates only «non-normal paraffins». In order to improve and to test other alternatives, flexible and rigid frameworks were synthesized, performing a set of breakthrough curves with hexane isomers nHEX, 3MP, 22DMB and 23DMB with the purpose of obtaining adsorption equilibrium isotherms and further analysis of their performances in order to find new frameworks that offer better results. This concerned first the rigid frameworks UiO-66(Zr) functionalized with the functional groups –Br, –NO2, and –NH2; the mesoporous MIL-100(Cr) and its functionalized analogue MIL-100(Cr) grafted with alkylamines, the microporous Ti MOF MIL-125 functionalized with the functional group –NH2 and the iron tetracarboxylate MIL-127(Fe). The flexible frameworks were the Zn imidazolate ZIF-8, the iron(III) dicarboxylates MIL-53(Fe) functionalized with the functional groups –(CF3)2 and –2CH3 and the MIL-88 functionalized with the functional group –2CF3. The characterization of these crystalline adsorbents was achieved by X-Ray Powder Diffraction (XRPD), Infra-Red spectroscopy (IR), Thermogravimetric Analysis (TGA) and nitrogen surface area measurement. MIL-53(Fe)–(CF3)2 and ZIF-8 demonstrated molecular sieve effects with interesting and promossing behaviour for hexane isomers separation.
|
46 |
Novel precursors for chalcogenide materialsOyetunde, Temidayo Timothy January 2011 (has links)
Metal chalcogenides (sulfides, selenides and tellurides) are materials of current interest due to their peculiar properties such as optoelectronic, magnetooptic, thermoelectric and piezoelectric displays. These semiconducting materials have potential applications in solar cell devices, infrared detectors and ambient thermoelectric generators. Previously, these materials have been deposited by multiple-source precursor route with several problems associated with this technique. This work describes the synthesis of metal complexes (Zn, Cd, Fe, Ni, Pd, Pt) using the imidodichalcogenodiphosphinate ligand (Woollins ligand). Their thermal decomposition together with structural and spectroscopy analysis was carried out. The complexes were used as single source precursors for the deposition of cadmium selenide, cadmium phosphide, cadmium sulfide, zinc selenide, iron selenide and the tellurides of nickel, palladium, platinum and iron as thin films and powders. These were deposited by AACVD and pyrolysis. The deposited thin films and powders were characterised by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). The cadmium complexes [Cd{iPr2P(Se)NP(Se)iPr2}2] and [Cd{iPr2P(S)NP(Se)iPr2}2] deposited the mixture of hexagonal CdSe and monoclinic Cd2P3 films at the flow rate of 160 sccm at 475 and 500 °C. At the flow rate of 240 sccm, only hexagonal CdSe was deposited from [Cd{iPr2P(Se)NP(Se)iPr2}2] at all temperatures. Hexagonal CdS and the mixture of orthorhombic Cd6P7/cubic Cd7P10 were deposited from [Cd{iPr2P(S)NP(S)iPr2}2]. The zinc complexes [Zn{iPr2P(Se)NP(Se)iPr2}2] and [Zn{iPr2P(S)NP(Se)iPr2}2] both deposited cubic ZnSe at all temperatures with the flow rates of 160 and 240 sccm. The iron complexes [Fe{(SePPh2)2N}2] and [Fe{(SePPh2NPPh2S)2N}2] deposited orthorhombic FeSe2 mixed with monoclinic Fe3Se4 by pyrolysis at 500 and 550 °C. An unresolved pattern was observed from the complex [Fe{(SePPh2NPPh2S)2N}2] at 550 °C. XPS analysis of the deposited FeSe2 showed the surface oxidation of the material, while the magnetic measurements on the sample using SQUID confirmed its ferromagnetic properties. The telluride complexes of nickel, palladium, platinum and iron deposited the metal telluride respectively as: hexagonal NiTe, hexagonal PdTe, hexagonal PtTe2 (mixed with rhombohedral PtTe) and hexagonal FeTe2. Conductivity studies on NiTe and PdTe revealed them to be insulators, while the magnetic measurements on FeTe2 indicated its antiferromagnetic behaviour.
|
47 |
Study of lead sorption on magnetite at high temperatures.Paliwal, Vaishali 12 1900 (has links)
Lead's uptake on magnetite has been quantitatively evaluated in the present study at a temperature of 200°C and pH of 8.5 with lead concentrations ranging from 5 ppm to175 ppm by equilibrium adsorption isotherms. The pH independent sorption behavior suggested lead sorption due to pH independent permanent charge through weak electrostatic, non-specific attraction where cations are sorbed on the cation exchange sites. The permanent negative charge could be a consequence of lead substitution which is supported by increase in the lattice parameter values from the X-ray diffraction (XRD) results. Differential scanning calorimetry (DSC/TGA) results showed an increase of exothermic (magnetite to maghemite transformation) peak indicating substitution of lead ions due to which there is retardation in the phase transformation. Presence of outer sphere complexes and physical sorption is further supported by Fourier transformed infrared spectroscopy (FTIR). None of the results suggested chemisorption of lead on magnetite.
|
48 |
Synthesis, characterization and application of amine-modified Macadamia nutshell adsorbents and ion imprinted polymers for the sequestration of Cr(VI) ions from aqueous solutionNchoe, Obakeng Boikanyo 08 1900 (has links)
M. Tech (Department of Chemistry, Faculty of Applied and Computer Sciences) Vaal University of Technology. / Persisting challenges associated with remediation of heavy metals from aqueous media have stirred the need for enhancement of current technologies. Cellulosic agro waste materials (AWM) as well as ion-imprinted polymers (IIP) have received ardent attention from researchers. These materials are often employed in the following industries: water and wastewater treatment, medical, pharmaceutical and packaging. Applications in water and wastewater treatment have gained significant interest due to desirable features they possess. In the case of AWM, these features include a tuneable surface area and poor porosity, basic surface functional groups and chemical stability. Some desired features in IIP include adsorption sites compatible for the ion imprint obtained after leaching with suitable reagents, rigidity and reusability. The efficacy of employing AWM and IIP for the remediation of toxic chromium from aqueous solution was explored. The current study is made up of part A and B. In part A, Macadamia nutshell powder was treated using HNO3, NaOH, as well as Fenton’s reagent. The three materials underwent a new modification which involved reacting treated adsorbents with cetyltrimethylammonium chloride (CTAC), followed by immobilization of 1,5' diphenylcarbazide (DPC) ligand. The adsorbents were ultimately washed, dried and stored for Cr(VI) batch adsorption experiments. Part B involved a synthesis of IIP and their non-imprinted polymer counterpart (NIP) for Cr(VI) sequestration in aqueous solution. This was done by precipitation polymerization of functional monomers, crosslinker and DPC-Cr(VI) complex as a template. Non-imprinted polymers were fashioned in a manner like that of IIP but with the exclusion of Cr(VI) ion template.
Characterizations of the adsorbents were done using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and carbon, hydrogen, nitrogen and sulphur (CHNS) analyzer. Batch adsorption experiments were done and parameters such as solution pH, adsorbent dosage, initial Cr(VI) concentration and contact time were optimized.
Working solutions were analyzed using ultraviolet-visible (UV-Vis) and atomic absorption (AA) spectroscopy. Adsorption parameters found to be optimum for DPC immobilized cellulosic adsorbents were pH 1.4, adsorbent mass of 0.1 g, 100 mg/L initial concentration and 125 minutes of contact time. The adsorption parameters determined to be optimum for IIP and NIP were pH 2.6, 0.2 g adsorbent mass, 80 mg/L initial concentration and 240 minutes of contact time. Reusability studies demonstrated the potential of adsorbents to remove Cr(VI) ions from aqueous media after successive adsorption-desorption cycles. Selectivity studies indicated that DPC immobilized adsorbents as well as IIP were able to selectively adsorb Cr(VI) ions from aqueous media in the presence of Zn(II), Cu(II), Co(II) and NI(II) ions. Kinetic models revealed that DPC immobilized cellulosic adsorbents and synthetic IIP were most fitting for pseudo-second order and pseudo first order, respectively. On the other hand, adsorption isotherm studies demonstrated that DPC immobilized cellulosic adsorbents and synthetic polymers were best fit for Freundlich and Langmuir adsorption isotherm, respectively.
|
49 |
Porovnání vlastností dvou výrobků pro umělá kluziště na bázi kaučuku etylén-propylen-dien / Properties comparison of two products used for skating rink based on ehtylene-propylene-dien rubberKostková, Jana January 2015 (has links)
This master thesis deals with characterization of two black and white products based on ethylene-propylene-diene rubber (EPDM) used for skating rink. Products marked with A and are different in their diameter of circular tubes trough which cooling medium passes and also in the distance of these tubes. Both of materials were characterized in order to determine whether it is the EPDM and how are they different. The characterization methods were used: differential scanning calorimetry, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, tensile test, swelling test, thermooxidative test. The composition of both materials, including fillers and others additives is almost the same but difference is in structure of EPDM and probably also in interaction with fillers, what exhibits different mechanical properties, thermooxidative stability and thermal capacity. These differences which have been found are essential for long-term use properties of both materials.
|
50 |
Mechanické vlastnosti gelových aprotických elektrolytů / Mechanical propertties gel polymer aprotic electrolytesBárta, Vladimír January 2011 (has links)
This work deals with the measurement of electrical conductivity and mechanical properties of gel polymer electrolyte containing Lithium ion and their preparation. The theoretical part deals with the development of gel polymer electrolyte, their use and methods of measurement of electrical conductivity and mechanical properties. In the experimental part describes the preparation of gel electrolyte, the measurement of electrical conductivity, temperature dependence and the measurement of mechanical properties.
|
Page generated in 0.0346 seconds